化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 539-545.DOI: 10.11949/0438-1157.20201504
收稿日期:
2020-10-28
修回日期:
2021-01-14
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
李廷贤
作者简介:
何起帆(1997—),女,硕士研究生,基金资助:
HE Qifan(),WU Minqiang,LI Tingxian(),WANG Ruzhu
Received:
2020-10-28
Revised:
2021-01-14
Online:
2021-06-20
Published:
2021-06-20
Contact:
LI Tingxian
摘要:
针对正十八烷相变易泄漏的问题,采用烯烃嵌段共聚物(olefin block copolymer,OBC)作为封装结构,制备复合定型相变材料。并通过添加膨胀石墨(expanded graphite,EG),改善其热导率低的问题。研究结果表明,当OBC的质量分数为20%时,复合相变材料未发现明显泄漏,定型效果较好,此时复合相变材料的相变焓为166.87 J/g,相较纯十八烷(227.40 J/g)下降26.62%。针对添加有不同质量分数EG的复合相变材料,其热导率随EG含量的增加而增大。其中当EG质量分数为5%时,复合相变材料热导率为4.179 W/(m?K),较纯相变材料热导率[0.24 W/(m?K)提高了约16倍,即EG能够有效提高复合相变材料的导热性能。此外,5%含量下的复合相变材料相变焓约为149.54 J/g,且在经历50次循环后,相变温度和相变焓均未有明显变化,即制备的复合相变材料具有较好的热稳定性。因此,该复合相变材料在建筑节能方面具有应用潜力。
中图分类号:
何起帆, 吴闽强, 李廷贤, 王如竹. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545.
HE Qifan, WU Minqiang, LI Tingxian, WANG Ruzhu. Preparation and thermophysical properties of octadecane/ OBC/ EG composite shaped phase change material[J]. CIESC Journal, 2021, 72(S1): 539-545.
材料 | 起始温度Tms/℃ | 峰值Tmp/℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
纯正十八烷 | 27.97 | 30.08 | 31.06 | 227.40 |
10% OBC/正十八烷 | 23.64 | 27.03 | 30.45 | 193.62 |
20% OBC/正十八烷 | 22.72 | 26.98 | 32.56 | 166.87 |
30% OBC/正十八烷 | 21.92 | 26.96 | 29.26 | 136.37 |
表1 正十八烷/OBC复合相变材料熔化过程的相变温度及相变焓
Table1 Phase change temperature and enthalpy of octaecane/OBC composite PCM in melting process
材料 | 起始温度Tms/℃ | 峰值Tmp/℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
纯正十八烷 | 27.97 | 30.08 | 31.06 | 227.40 |
10% OBC/正十八烷 | 23.64 | 27.03 | 30.45 | 193.62 |
20% OBC/正十八烷 | 22.72 | 26.98 | 32.56 | 166.87 |
30% OBC/正十八烷 | 21.92 | 26.96 | 29.26 | 136.37 |
材料 | 起始温度Tms/℃ | 峰值Tmp/℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
纯正十八烷 | 24.06 | 22.00 | 19.79 | 230.40 |
10% OBC/正十八烷 | 21.74 | 20.26 | 18.27 | 191.68 |
20% OBC/正十八烷 | 22.75 | 19.23 | 14.15 | 161.99 |
30% OBC/正十八烷 | 22.14 | 18.00 | 15.51 | 138.43 |
表2 正十八烷/OBC复合相变材料凝固过程的相变温度及相变焓
Table2 Phase change temperature and enthalpy of octaecane/OBC composite PCM during solidification
材料 | 起始温度Tms/℃ | 峰值Tmp/℃ | 终止温度Tme/℃ | 相变焓Hm/(J/g) |
---|---|---|---|---|
纯正十八烷 | 24.06 | 22.00 | 19.79 | 230.40 |
10% OBC/正十八烷 | 21.74 | 20.26 | 18.27 | 191.68 |
20% OBC/正十八烷 | 22.75 | 19.23 | 14.15 | 161.99 |
30% OBC/正十八烷 | 22.14 | 18.00 | 15.51 | 138.43 |
1 | Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment [J]. Nature, 2010, 463(7282): 747-756. |
2 | Lippelt J, Sindram M. Global energy consumption [J]. CESifo Forum, 2011, 12: 80-82. |
3 | Ji H X, Sellan D P, Pettes M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage [J]. Energy Environ. Sci., 2014, 7(3): 1185-1192. |
4 | Nomura T, Okinaka N, Akiyama T. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant [J]. Resources, Conservation and Recycling, 2010, 54(11): 1000-1006. |
5 | Song M J, Niu F X, Mao N, et al. Review on building energy performance improvement using phase change materials [J]. Energy and Buildings, 2018, 158: 776-793. |
6 | Gur I, Sawyer K, Prasher R. Engineering. Searching for a better thermal battery [J]. Science, 2012, 335(6075): 1454-1455. |
7 | Han G G D, Li H S, Grossman J C. Optically-controlled long-term storage and release of thermal energy in phase-change materials [J]. Nature Communications, 2017, 8: 1446. |
8 | Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. |
9 | Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage [J]. Energy Conversion and Management, 2015, 105: 272-284. |
10 | Huang M J, Eames P C, McCormack S, et al. Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system [J]. Renewable Energy, 2011, 36(11): 2932-2939. |
11 | Khan Z, Khan Z, Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility [J]. Energy Conversion and Management, 2016, 115: 132-158. |
12 | Soares N, Costa J J, Gaspar A R, et al. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency [J]. Energy and Buildings, 2013, 59: 82-103. |
13 | 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 2070-2075. |
Wang X, Fang J H, Liu P, et al. Research progress of phase change materials [J]. Journal of Functional Materials, 2019, 50(2): 2070-2075. | |
14 | Tao P, Shang W, Song C Y, et al. Bioinspired engineering of thermal materials [J]. Advanced Materials, 2015, 27(3): 428-463. |
15 | Kant K, Shukla A, Sharma A. Advancement in phase change materials for thermal energy storage applications [J]. Solar Energy Materials and Solar Cells, 2017, 172: 82-92. |
16 | Aftab W, Mahmood A, Guo W H, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage [J]. Energy Storage Materials, 2019, 20: 401-409. |
17 | Yang J, Zhang E W, Li X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage [J]. Carbon, 2016, 98: 50-57. |
18 | Li G Y, Zhang X T, Wang J, et al. From anisotropic graphene aerogels to electron- and photo-driven phase change composites [J]. Journal of Materials Chemistry A, 2016, 4(43): 17042-17049. |
19 | Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials [J]. ACS Nano, 2015, 9(12): 11699-11707. |
20 | Ye S B, Zhang Q L, Hu D D, et al. Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage [J]. Journal of Materials Chemistry A, 2015, 3(7): 4018-4025. |
21 | Wu S, Li T X, Wu M Q, et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management [J]. Journal of Materials Chemistry A, 2020, 8(38): 20011-20020. |
22 | Giro-Paloma J, Martínez M, Cabeza L F, et al. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1059-1075. |
23 | de Cortazar M G, Rodríguez R. Thermal storage nanocapsules by miniemulsion polymerization [J]. Journal of Applied Polymer Science, 2013, 127(6): 5059-5064. |
24 | Zhang J, Wang S S, Zhang S D, et al. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage [J]. The Journal of Physical Chemistry C, 2011, 115(41): 20061-20066. |
25 | Fang Y T, Kuang S Y, Gao X N, et al. Preparation and characterization of novel nanoencapsulated phase change materials [J]. Energy Conversion and Management, 2008, 49(12): 3704-3707. |
26 | 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 18-26. |
Cai D, Li J, Jiao N X. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials [J]. Acta Physica Sinica, 2019, 68(10): 18-26. | |
27 | 李琳, 李东旭, 刘洋, 等. 月桂酸-肉豆蔻酸/膨胀石墨封装复合相变储能材料的制备及表征[J]. 太阳能学报, 2016, 37(10): 2627-2632. |
Li L, Li D X, Liu Y, et al. Preparation and characterization of lauric acid-myristic acid/expanded graphite composite encapsulated phase change energy storage material [J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2627-2632. | |
28 | 刘菁伟, 杨文彬, 田本强, 等. 石蜡/高密度聚乙烯/膨胀石墨导热增强型复合相变材料热导率的影响因素[J]. 高分子材料科学与工程, 2015, 31(5): 83-86, 92. |
Liu J W, Yang W B, Tian B Q, et al. Thermal conductivity of paraffin/HDPE/expanded graphite phase change composite [J]. Polymer Materials Science & Engineering, 2015, 31(5): 83-86, 92. | |
29 | Shi J M, Huang X Y, Guo H C, et al. Experimental investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building [J]. ES Energy & Environment, 2020, 8: 21-28. |
30 | Kuznik F, Virgone J. Experimental assessment of a phase change material for wall building use [J]. Applied Energy, 2009, 86(10): 2038-2046. |
31 | Kuznik F, Virgone J, Johannes K. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard [J]. Renewable Energy, 2011, 36(5): 1458-1462. |
32 | Mi X M, Liu R, Cui H Z, et al. Energy and economic analysis of building integrated with PCM in different cities of China [J]. Applied Energy, 2016, 175: 324-336. |
33 | Butala V, Stritih U. Experimental investigation of PCM cold storage [J]. Energy and Buildings, 2009, 41(3): 354-359. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[10] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[11] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[12] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[13] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[14] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[15] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||