化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 546-553.doi: 10.11949/0438-1157.20200287

• 材料化学工程与纳米技术 • 上一篇    下一篇

Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究

刘增欣1(),王依军1,郝春莲2,刘秀萍1()   

  1. 1.临沂大学材料科学与工程学院,山东 临沂 276000
    2.中国石油大学材料科学与工程学院,山东 青岛 266580
  • 收稿日期:2020-04-06 修回日期:2020-10-16 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 刘秀萍 E-mail:liuzengxin@lyu.edu.cn;lxpxin@163.com
  • 作者简介:刘增欣(1970—),女,硕士,实验师,liuzengxin@lyu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21776315);山东省自然科学基金项目(ZR2020QB032)

Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation

LIU Zengxin1(),WANG Yijun1,HAO Chunlian2,LIU Xiuping1()   

  1. 1.School of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China
    2.School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2020-04-06 Revised:2020-10-16 Published:2021-06-20 Online:2021-06-20
  • Contact: LIU Xiuping E-mail:liuzengxin@lyu.edu.cn;lxpxin@163.com

摘要:

CO2的捕获和分离具有重要的工业和环境意义。采用溶剂热法,以羧基和路易斯碱位点功能修饰的配体和锌离子构筑了阴离子型金属有机框架材料{[Zn2(N)·(DMF)3·(CH3)2NH2]·(DMF)2}n (NEM-7-Zn)。为了提高骨架的稳定性,通过金属离子置换工艺,将NEM-7-Zn转化为高稳定性的铜基框架材料NEM-7-Cu。采用EA、PXRD、TGA及比表面积分析等技术对多孔材料进行综合表征,并测定了NEM-7-Cu对二氧化碳、乙炔和甲烷单组分气体的吸附等温线。实验结果表明,NEM-7-Cu不仅具有较高的CO2 吸附性能(74 cm3·g-1),更表现出优异的CO2/CH4(11.5)和C2H2/CH4(7.1)吸附选择性。通过巨正则Monte Carlo方法(GCMC)计算得到CO2在NEM-7-Cu中的主要吸附位点为功能基团羧基与路易斯碱位点附近以及Cu的金属团簇附近。

关键词: 金属-有机框架材料, 金属离子置换(Zn/Cu), CO2, CO2/CH4

Abstract:

The adsorption and separation of CO2 are of great importance from both industrial and environmental points of view. A metal-organic framework {[Zn2(N)·(DMF)3·(CH3)2NH2]·(DMF)2}n (NEM-7-Zn) was synthesized by nitrogen sites and —COO- groups decorated ligand. In order to improve the stability, the metal center of NEM-7-Zn was converted from Zn to Cu through metal ion exchange, which resulted in a stable skeleton (NEM-7-Cu). The synthesized materials were characterized by analysis techniques including EA, PXRD, TGA and specific surface area analysis. Single-component adsorption isotherms for acetylene and carbon dioxide on NEM-7-Cu was determined. Gas adsorption test results show that, NEM-7-Cu possesses high CO2 uptake (74 cm3·g-1) and selectivities for CO2/CH4 (11.5) and C2H2/CH4 (7.1). Grand canonical Monte Carlo (GCMC) simulations revealed the strong CO2 adsorption sites exist near the Cu cluster sites, the uncoordinated —COO- groups and the Lewis basic nitrogen sites.

Key words: metal-organic framework, metathesis of zinc with copper, CO2, CO2/CH4

中图分类号: 

  • O 611.4

图1

NEM-7-Zn的晶体结构羧基和氮修饰的配体(a);锌的次级结构单元(b);沿C轴方向的NEM-7-Zn结构堆积图(c)(锌:蓝绿色;碳:橘红色;氧:红色;氮:蓝色)"

图2

NEM-7-Zn、模拟NEM-7-Zn单晶、蓝色离子交换后制备的NEM-7-Cu、活化后的NEM-7-Cu、活化后的NEM-7-Zn的XRD谱图(a);配体H5N、NEM-7-Zn、金属中心转换之后的NEM-7-Cu及活化后的红外吸收光谱(b)"

图3

NEM-7-Zn和金属离子交换后的NEM-7-Cu晶体图(a); 金属锌转化为金属铜的动力学过程曲线(b);金属锌(c)转化为金属铜(d)的EDX能谱图"

图4

77 K条件下NEM-7-Zn和NEM-7-Cu的氮气吸附等温线(a);NEM-7-Cu的孔径分布(b)"

图5

NEM-7-Cu的吸附曲线和吸附热273 K和298 K条件下CO2(a)、C2H2(b)和CH4(c)的吸附曲线;C2H2、CO2 和CH4的吸附热(d)"

图6

273 K和0.1 bar条件下通过GCMC模拟的CO2在NEM-7-Cu的吸附密度图(a);通过IAST计算NEM-7-Cu的CO2/CH4(b)和C2H2/CH4的吸附选择性(c)"

3 Chmelik C, Freude D, Bux H, et al. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry[J]. Microporous and Mesoporous Materials, 2012, 147(1): 135-141.
4 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352.
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352.
5 原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450.
Yuan Y, Wang M, Zhou Y Q, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450.
6 Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion[J]. Energy Conversion and Management, 2003, 44(19): 3073-3091.
7 Fan W D, Wang X, Xu B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. Journal of Materials Chemistry A, 2018, 6(47): 24486-24495.
8 Xue Y Y, Li S N, Jiang Y C, et al. Quest for 9-connected robust metal-organic framework platforms based on [M3(O/OH)(COO)6(pyridine)3] clusters as excellent gas separation and asymmetric supercapacitor materials[J]. Journal of Materials Chemistry A, 2019, 7(9): 4640-4650.
9 Zhao X, Wang Y X, Li D S, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189.
10 Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932.
11 Yu G L, Zou X Q, Sun L, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Advanced Materials, 2019, 31(15): 1806853.
12 He Y P, Chen G H, Yuan L B, et al. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties[J]. Inorganic Chemistry, 2020, 59(2): 964-967.
13 Gupta M, Chatterjee N, De D. Metal-organic frameworks of Cu(II) constructed from functionalized ligands for high capacity H2 and CO2 gas adsorption and catalytic studies[J]. Chemical Review, 2020, 59(3): 1810-1822.
14 Chen Y P, Liu T F, Fordham S, et al. Crystal engineering on superpolyhedral building blocks in metal-organic frameworks applied in gas adsorption[J]. Acta Crystallographica Section B, 2015, 71(6): 613-618.
15 Yoo D K, Yoon T U, Bae Y S, et al. Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: effective and selective CO2 adsorption with amino or amide functionality[J]. Chemical Engineering Journal, 2020, 380: 122496.
1 Liu K, Bai H K, Wang J B, et al. How to reduce energy intensity in China's heavy industry—evidence from a seemingly uncorrelated regression[J]. Journal of Cleaner Production, 2018, 180: 708-715.
2 Sun F Z, Yang S Q, Krishna R, et al. Microporous metal-organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6105-6111.
16 Wang Y, He M H, Gao X X, et al. Three isoreticular ssa-type MOFs derived from bent diisophthalate ligands: exploring the substituent effect on structural stabilities and selective C2H2/CH4 and CO2/CH4 adsorption properties[J]. Dalton Transactions, 2018, 47(36): 12702-12710.
17 Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
18 Zhou M, Ju Z, Yuan D. A new metal-organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange[J]. Chemical Communications, 2018, 54(24): 2998-3001.
19 Zhang M X, Wang Q, Lu Z Y, et al. A nitro-decorated NbO-type metal-organic framework with a highly selective CO2 uptake and CH4 storage capacity[J]. CrystEngComm, 2014, 16(28): 6287-6290.
20 Wen H M, Chang G G, Li B, et al. Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal-organic framework[J]. Crystal Growth & Design, 2017, 17(4): 2172-2177.
21 Lin R B, Li L, Wu H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J]. Journal of the American Chemical Society, 2017, 139(23): 8022-8028.
22 Liu X P, Hao C L, Li J, et al. An anionic metal–organic framework: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient C3/C2 hydrocarbon and organic dye separation[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2898-2905.
23 Gupta A, Chempath S, Sanborn M J, et al. Object-oriented programming paradigms for molecular modeling[J]. Molecular Simulation, 2003, 29(1): 29-46.
24 Yang J, Wang X, Dai F, et al. Improving the porosity and catalytic capacity of a zinc paddlewheel metal-organic framework (MOF) through metal-ion metathesis in a single-crystal-to-single-crystal fashion[J]. Inorganic Chemistry, 2014, 53(19): 10649-10653.
25 Xiao Z Y, Wang Y T, Zhang S Y, et al. Stepwise synthesis of diverse isomer MOFs via metal-ion metathesis in a controlled single-crystal-to-single-crystal transformation[J]. Crystal Growth & Design, 2017, 17(8): 4084-4089.
26 Zhang J W, Hu M C, Li S N, et al. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons[J]. Dalton Transactions, 2017, 46(3): 836-844.
27 Liu B, Li D S, Hou L, et al. An unprecedented acylamide-functionalized 2D→3D microporous metal-organic polycatenation framework exhibiting highly selective CO2 capture[J]. Dalton Transactions, 2013, 42(27): 9822-9825.
28 King S C, Lin R B, Wang H L, et al. Two-dimensional metal-organic frameworks for selective separation of CO2/CH4 and CO2/N2[J]. Materials Chemistry Frontiers, 2017, 1(8): 1514-1519.
29 Tang F S, Lin R B, Lin R G, et al. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework[J]. Journal of Solid State Chemistry, 2018, 258: 346-350.
30 Zheng B S, Yang Z, Bai J F, et al. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks[J]. Chemical Communications, 2012, 48(56): 7025-7027.
31 Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research, 2010, 43(1): 58-67.
[1] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[2] 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492.
[3] 闫帅, 杨家宝, 龚岩, 郭庆华, 于广锁. CO2稀释对甲烷反扩散火焰结构的影响研究[J]. 化工学报, 2022, 73(3): 1335-1342.
[4] 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
[5] 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893.
[6] 李沛昀, 李杨, 王文彬, 王文. 三角转子膨胀机在跨临界CO2制冷循环中的应用分析[J]. 化工学报, 2021, 72(S1): 161-169.
[7] 何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460.
[8] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[9] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[10] 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
[11] 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380.
[12] 蔡中杰, 田盼, 黄忠亮, 黄猛, 黄加乐, 詹国武, 李清彪. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679.
[13] 王结祥, 关磊, 叶松寿, 郑进保, 陈秉辉. 氮杂环有机催化CO2环加成反应:咪唑环的弱协同效应[J]. 化工学报, 2021, 72(7): 3696-3705.
[14] 王结祥, 李洪国, 叶松寿, 郑进保, 陈秉辉. 卤素负载锌-腺嘌呤骨架材料的构建及无助剂催化CO2环加成反应[J]. 化工学报, 2021, 72(7): 3686-3695.
[15] 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!