化工学报 ›› 2022, Vol. 73 ›› Issue (1): 59-72.DOI: 10.11949/0438-1157.20210880
付鹏波1(),田金乙1,吕文杰2,黄渊3,刘毅1,卢浩2,杨强2,修光利1,汪华林1()
收稿日期:
2021-06-29
修回日期:
2021-08-05
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
汪华林
作者简介:
付鹏波(1990—),男,博士,特聘副研究员,基金资助:
Pengbo FU1(),Jinyi TIAN1,Wenjie LYU2,Yuan HUANG3,Yi LIU1,Hao LU2,Qiang YANG2,Guangli XIU1,Hualin WANG1()
Received:
2021-06-29
Revised:
2021-08-05
Online:
2022-01-05
Published:
2022-01-18
Contact:
Hualin WANG
摘要:
近年来我国的水环境和水生态得到了明显的改善,但仍然存在很多的问题,水污染治理形势依然相当严峻。物理分离由于可不加或少加化学、生物药剂,造成二次污染的风险小,被认为是清洁的水处理技术。突破常规以生化法为核心的矿化模式,构建以物理分离法为核心的资源化模式,可减少化学和生物药剂消耗、减排二次污染物,为我国水环境安全提供一条新路线。以市政污水、饮用水、工业水和海上油气开采生产水为例,介绍了物理法水处理技术的最新成果,从而为物理法变革性水处理技术提供新思路。
中图分类号:
付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72.
Pengbo FU,Jinyi TIAN,Wenjie LYU,Yuan HUANG,Yi LIU,Hao LU,Qiang YANG,Guangli XIU,Hualin WANG. Physical water treatment technology[J]. CIESC Journal, 2022, 73(1): 59-72.
技术名称 | 分离效率/% | 压降/MPa | 占地/m2 | 废水回用率/% | 再生周期/h | 设备投资(400 m3/h)/万元 | 操作及维护费用/(万元/年) |
---|---|---|---|---|---|---|---|
沸腾床分离 | 90~95 | 0.2~0.3 | 120~150 | ≥ 98 | 96~192 | 1200~1400 | 10~20 |
旋流分离 | 30~60 | 0.2~0.3 | 50~70 | ≥ 95 | - | 1000~1200 | 10~20 |
陶瓷膜分离 | 95~99 | 0.3~0.6 | 120~150 | ≥ 90 | 2~8 | 2800~3600 | 400~800 |
布袋过滤分离 | 40~70 | 0.2~0.5 | 120~150 | ≥ 90 | 3~5 | 1400~1800 | 200~400 |
表 1 不同MTO急冷水净化技术对比
Table 1 Comparison of different MTO quench water purification technologies
技术名称 | 分离效率/% | 压降/MPa | 占地/m2 | 废水回用率/% | 再生周期/h | 设备投资(400 m3/h)/万元 | 操作及维护费用/(万元/年) |
---|---|---|---|---|---|---|---|
沸腾床分离 | 90~95 | 0.2~0.3 | 120~150 | ≥ 98 | 96~192 | 1200~1400 | 10~20 |
旋流分离 | 30~60 | 0.2~0.3 | 50~70 | ≥ 95 | - | 1000~1200 | 10~20 |
陶瓷膜分离 | 95~99 | 0.3~0.6 | 120~150 | ≥ 90 | 2~8 | 2800~3600 | 400~800 |
布袋过滤分离 | 40~70 | 0.2~0.5 | 120~150 | ≥ 90 | 3~5 | 1400~1800 | 200~400 |
图9 旋流场活性污泥自公转耦合释碳过程示意图
Fig.9 Schematic diagram of the carbon release process of activated sludge coupled with self-rotation and revolution in hydrocyclone
技术分类 | 设备类型 | 分离粒径极限/μm |
---|---|---|
重力分离 | API分离器或撇油器 | 100~150 |
板块聚结 | CPI分离器或错流分离器 | 30~50 |
增强聚结 | 填料式聚结器 | 10~15 |
气浮 | 溶气气浮或诱导气浮 | 10~20 |
离心分离 | 水力旋流器或离心机 | 12~20 |
介质过滤 | 核桃壳等介质过滤器 | 2 |
膜过滤 | 微滤超滤纳滤等 | <1 |
表 2 常见生产水处理技术分离精度
Table 2 Separation accuracy of common production water treatment technology
技术分类 | 设备类型 | 分离粒径极限/μm |
---|---|---|
重力分离 | API分离器或撇油器 | 100~150 |
板块聚结 | CPI分离器或错流分离器 | 30~50 |
增强聚结 | 填料式聚结器 | 10~15 |
气浮 | 溶气气浮或诱导气浮 | 10~20 |
离心分离 | 水力旋流器或离心机 | 12~20 |
介质过滤 | 核桃壳等介质过滤器 | 2 |
膜过滤 | 微滤超滤纳滤等 | <1 |
1 | Coghlan A. Five billion people face water shortages by 2050, warns UN[Z/OL]. The United Nations, 2018. . |
2 | International energy outlook2019—with projections to 2050[Z/OL]. U.S. Energy Information Administration, 2019. . |
3 | 侯立安, 吴明红, 席北斗, 等. 2019年水环境安全热点回眸[J]. 科技导报, 2020, 38(1): 215-228. |
Hou L A, Wu M H, Xi B D, et al. Hot spots of advances in water environmental safty in 2019: an overview[J]. Science & Technology Review, 2020, 38(1): 215-228. | |
4 | 余忻, 黄悦, 张志果, 等. 水环境综合治理市场现状和发展形势分析[J]. 给水排水, 2020, 46(6): 85-88. |
Yu X, Huang Y, Zhang Z G, et al. Analysis of the market and development tendency of water environment comprehensive treatment[J]. Water & Wastewater Engineering, 2020,46(6): 85-88. | |
5 | Roinas G, Mant C, Williams J B. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems[J]. Water Science & Technology, 2014, 69(4):703-709. |
6 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
7 | Calmano W. Topics of water sciences and technology[J]. Environmental Science and Pollution Research International, 2004, 11(2):126. |
8 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
9 | 曲久辉. 物理技术——值得关注的清洁水处理方法[J]. 给水排水, 2014, 50(4): 1. |
Qu J H. Physical technology—a clean water treatment method worth paying attention to[J]. Water & Wastewater Engineering, 2014, 50(4): 1. | |
10 | Schaflinger U. Centrifugal separation of a mixture[J]. Fluid Dynamics Research, 1990, 6(5/6):213-249. |
11 | Al-Faqheri W, Thio T, Qasaimeh M A, et al. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review[J]. Microfluidics and Nanofluidics, 2017, 21(6):102. |
12 | Fu P B, Jiang X, Ma L, et al. Enhancement of PM2.5 cyclone separation by droplet capture and particle sorting[J]. Environmental Science & Technology, 2018, 52: 11652-11659. |
13 | Fu P B, Wang F, Yang X J, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
14 | Pan J K, Shen Q S, Cui X, et al. Cyclones of different sizes and underflow leakage for aerosol particles separation enhancement[J]. Journal of Cleaner Production, 2021, 280:124379. |
15 | 李洪懿, 陈可可, 翟丁, 等. 导电材料在膜分离领域中的应用[J]. 科技导报, 2015, 33(14): 18-23. |
Li H Y, Chen K K, Zhai D, et al. Applications of conductive materials in membrane separation industry[J]. Science & Technology Review, 2015, 33(14): 18-23. | |
16 | Dou H Z, Xu M, Wang B Y, et al. Microporous framework membranes for precise molecule/ion separations[J]. Chemical Society Reviews, 2021, 50(2): 986-1029. |
17 | Mohshim D F, Mukhtar H B, Man Z, et al. Latest development on membrane fabrication for natural gas purification: a review[J]. Journal of Engineering, 2013, 2013: 101764. |
18 | Li D K, Kou J, Sun C B, et al. The application of superconducting magnetic separation in copper-moly separation[J]. Separation Science and Technology, 2019, 54(11): 1871-1878. |
19 | Yavuz C T, Prakash A, Mayo J T, et al. Magnetic separations: from steel plants to biotechnology[J]. Chemical Engineering Science, 2009, 64(10): 2510-2521. |
20 | Yeap S P, Lim J K, Ooi B S, et al. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications[J]. Journal of Nanoparticle Research, 2017, 19(11):368. |
21 | Li J, Zhang X, Fan W Y, et al. Dissolved organic matter dominating the photodegradation of free DNA bases in aquatic environments[J]. Water Research, 2020, 179:115885. |
22 | Liu B, Wu F, Deng N S. UV-light induced photodegradation of 17α-ethynylestradiol in aqueous solutions[J]. Journal of Hazardous Materials, 2003, 98(1/2/3):311-316. |
23 | da Silva R G, Aquino Neto S, Kokoh K B, et al. Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products[J]. Journal of Power Sources, 2017, 351:174-182. |
24 | Menezes P W, Walter C, Hausmann J N, et al. Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach[J]. Angewandte Chemie International Edition, 2019, 58(46): 16569-16574. |
25 | Kobya M, Demirbas E, Parlak N U, et al. Treatment of cadmium and nickel electroplating rinse water by electrocoagulation[J]. Environmental Technology, 2010, 31(13):1471-1481. |
26 | Kobya M, Omwene P I, Ukundimana Z. Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor[J]. Journal of Environmental Chemical Engineering, 2020, 8(2):103526. |
27 | Zodi S, Potier O, Michon C, et al. Removal of arsenic and COD from industrial wastewaters by electrocoagulation[J]. Journal of Electrochemical Science and Engineering, 2011, 1(1):55-65. |
28 | Luhovskyi O F, Gryshko I A, Bernyk I M. Enhancing the efficiency of ultrasonic wastewater disinfection technology[J]. Journal of Water Chemistry and Technology, 2018, 40(2):95-101. |
29 | Blume T, Neis U. Improving chlorine disinfection of wastewater by ultrasound application[J]. Water Science and Technology, 2005, 52(10/11):139-144. |
30 | Jin X, Li Z F, Zhao X, et al. Effect of ultrasound pre-treatment on ultraviolet disinfection in controlling bacterial photoreactivation[J]. Advanced Materials Research, 2011, 347-353:2369-2374. |
31 | Oki T, Koyanaka S, Nishisu Y, et al. Advanced physical separation technology for rare metal recycling[J]. Resources Processing, 2011, 58(3):95-100. |
32 | Stea D, Foss N J, Christensen P H. Physical separation in the workplace: separation cues, separation awareness, and employee motivation[J]. European Management Journal, 2015, 33(6):462-471. |
33 | 刘毅. AOH中碳源释放利用机制及应用[D]. 上海: 华东理工大学, 2018. |
Liu Y. Experimental investigation on sludge disruption for organics release in AOH process using a hydrocyclone and its industrial application[D]. Shanghai: East China University of Science and Technology, 2018. | |
34 | Lu H, Liu Y Q, Cai J B, et al. Treatment of offshore oily produced water: research and application of a novel fibrous coalescence technique[J]. Journal of Petroleum Science and Engineering, 2019, 178: 602-608. |
35 | 汪华林. 液固旋流分离新技术[M]. 北京: 化学工业出版社, 2019. |
Wang H L. Advanced Hydrocyclone Technology for Liquid-Solid Separation [M]. Beijing: Chemical Industry Press, 2019. | |
36 | Kennedy D, Norman C. So much more to know [J]. Science, 2005, 309(5731): 78-102. |
37 | 陆夕云, 林建忠. 能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J]. 科学通报, 2017, 62(11): 1115-1118. |
Lu X Y, Lin J Z. Can we develop a general theory of the dynamics of turbulent flows and the motion of granular materials?[J]. Chinese Science Bulletin, 2017, 62(11): 1115-1118. | |
38 | Qu J H, Wang H C, Wang K J, et al. Municipal wastewater treatment in China: development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 1-7. |
39 | Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
40 | Kart J. Largest-ever USDA grant to grow vegetables with wastewater[Z/OL]. Forbes, 2018. . |
41 | van Ginkel S W, Igou T, Chen Y S. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA[J]. Resources, Conservation and Recycling, 2017, 122: 319-325. |
42 | Song T, Tian J Y, Ni L, et al. Experimental study on performance of a de-foulant hydrocyclone with different reflux devices for sewage source heat pump[J]. Applied Thermal Engineering, 2019, 149: 354-365. |
43 | Tian J Y, Ni L, Song T, et al. An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J]. Separation and Purification Technology, 2018, 206: 268-285. |
44 | Hao X D, Li J, van Loosdrecht M C M, et al. Energy recovery from wastewater: heat over organics[J]. Water Research, 2019, 161: 74-77. |
45 | Ni L, Tian J Y, Song T, et al. Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective[J]. Separation & Purification Reviews, 2019, 48(1): 30-51. |
46 | Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: a review[J]. Water Research, 2019, 162: 492-504. |
47 | Li X F, Mitch W A. Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities[J]. Environmental Science & Technology, 2018, 52(4): 1681-1689. |
48 | Yang M T, Zhang X R, Liang Q H, et al. Application of (LC/)MS/MS precursor ion scan for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters: a review[J]. Water Research, 2019, 158: 322-337. |
49 | Thun M, Linet M S, Cerhan J R, et al. Cancer Epidemiology and Prevention[M]. Oxford: Oxford University Press, 2017. |
50 | Crittenden J C, Trussell R R, Hand D W, et al. MWH’s Water Treatment: Principles and Design[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. |
51 | Lv W J, Yang Q, Ma L, et al. Application of minihydrocyclones in methanol-to-olefin process wastewater treatment[J]. Chemical Engineering & Technology, 2015, 38(3):504-510. |
52 | Yang Q, Lv W J, Shi L, et al. Treating methanol-to-olefin quench water by minihydrocyclone clarification and steam stripper purification[J]. Chemical Engineering & Technology, 2015, 38(3):547-552. |
53 | Yang Q, Li Z M, Lv W J, et al. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone[J]. Separation and Purification Technology, 2013, 110:93-100. |
54 | Chen J Q, Wang L, Ma S H, et al. Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): a pilot-scale study[J]. Process Safety and Environmental Protection, 2021, 152: 108-116. |
55 | Liu Y, Wang H L, Xu Y X, et al. Achieving enhanced denitrification via hydrocyclone treatment on mixed liquor recirculation in the anoxic/aerobic process[J]. Chemosphere, 2017, 189: 206-212. |
56 | Sun Y X, Liu Y, Zhang Y H, et al. Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion[J]. Chemical Engineering Journal, 2019, 374: 1364-1372. |
57 | Xu Y X, Fang Y Y, Wang Z H, et al. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research, 2018, 141: 135-144. |
58 | 蔡敬伟, 屠佳樱. 我国发展海洋资源开发装备的机遇和挑战[J]. 中国船检, 2018 (9): 68-71. |
Cai J W, Tu J Y. Opportunities and challenges for our country’s development of marine resources development equipment[J]. China Ship Survey, 2018 (9): 68-71. | |
59 | 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31. |
Zhou S W, Li Q P, Zhu H S, et al. The current state and future of offshore energy exploration and development technology[J]. Engineering Sciences, 2016, 18(2): 19-31. | |
60 | Zheng J S, Chen B, Thanyamanta W, et al. Offshore produced water management: a review of current practice and challenges in harsh/Arctic environments[J]. Marine Pollution Bulletin, 2016, 104(1/2): 7-19. |
61 | Igunnu E T, Chen G Z. Produced water treatment technologies[J]. International Journal of Low-Carbon Technologies, 2014, 9(3): 157-177. |
62 | Fakhru’l-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
63 | Multon L M, Viraraghavan T. Removal of oil from produced water by coalescence/filtration in a granular bed[J]. Environmental Technology, 2006, 27(5): 529-544. |
64 | Kharoua N, Khezzar L, Nemouchi Z. Hydrocyclones for de-oiling applications—a review[J]. Petroleum Science and Technology, 2010, 28(7): 738-755. |
65 | Anlauf H. Recent developments in centrifuge technology[J]. Separation and Purification Technology, 2007, 58(2): 242-246. |
66 | Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. |
67 | Srinivasan A, Viraraghavan T. Removal of oil by walnut shell media[J]. Bioresource Technology, 2008, 99(17): 8217-8220. |
68 | Padaki M, Surya Murali R, Abdullah M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357: 197-207. |
69 | Weschenfelder S E, Louvisse A M T, Borges C P, et al. Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units[J]. Journal of petroleum Science and Engineering, 2015, 131: 51-57. |
70 | Weschenfelder S E, Fonseca M J C, Borges C P, et al. Application of ceramic membranes for water management in offshore oil production platforms: process design and economics[J]. Separation and Purification Technology, 2016, 171: 214-220. |
71 | Dickhout J M, Moreno J, Biesheuvel P M, et al. Produced water treatment by membranes: a review from a colloidal perspective[J]. Journal of Colloid and Interface Science, 2017, 487: 523-534. |
72 | Adham S, Hussain A, Minier-Matar J, et al. Membrane applications and opportunities for water management in the oil & gas industry[J]. Desalination, 2018, 440: 2-17. |
73 | Lu H, Xu X, Xie L S, et al. Deformation and crawling of oil drop on solid substrates by shearing liquid[J]. Chemical Engineering Science, 2019, 195: 720-729. |
74 | Lu H, Yang Q, Xu X, et al. Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation[J]. Chemical Engineering & Technology, 2016, 39(2): 255-262. |
75 | 张继伟, 王春林, 荣新明. 曹妃甸11-2油田高含水水平井酸化研究与应用[J]. 石油化工高等学校学报, 2018, 31(6): 95-100. |
Zhang J W, Wang C L, Rong X M. Research and application of acidizing technology on high water-cut horizontal well of CFD11-2 oilfield[J]. Journal of Petrochemical Universities, 2018, 31(6): 95-100. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[7] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[10] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[11] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[12] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[13] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[14] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[15] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||