化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4539-4550.DOI: 10.11949/0438-1157.20220543
张后虎1(), 吴晓莉2, 陈冲冲1, 陈静静1, 王景涛1()
收稿日期:
2022-05-01
修回日期:
2022-06-16
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
王景涛
作者简介:
张后虎(1997—),男,硕士研究生,1336751282@qq.com
基金资助:
Houhu ZHANG1(), Xiaoli WU2, Chongchong CHEN1, Jingjing CHEN1, Jingtao WANG1()
Received:
2022-05-01
Revised:
2022-06-16
Online:
2022-10-05
Published:
2022-11-02
Contact:
Jingtao WANG
摘要:
随着膜分离技术的迅速发展,其应用于混合溶剂分离以替代传统高能耗精馏等操作受到了越来越多研究者的关注,但制备具有均匀亚纳米筛分孔的分离膜是其面临的挑战。利用苯甲酸诱导各向同性的环糊精金属有机框架(CD-MOF)三维立方颗粒产生错层结构,再通过液相超声剥离法制得CD-MOF纳米片,以此为构筑单元制备二维层状MOF膜。膜内CD-MOF纳米片含有丰富、连通且均匀的本征亚纳米孔(0.78 nm),可识别分子间微小的尺寸差异,实现混合溶剂精准分离。如CD-MOF层状膜对溶解在苯中的均三异丙基苯与二异丙基苯混合液(摩尔比为1∶3)的分离因子达到7.4。此外,膜对溶解在甲醇中的甲基橙染料(1.0 nm)截留率达到99.6%,且甲醇通量达84.3 L·m-2·h-1·bar-1。
中图分类号:
张后虎, 吴晓莉, 陈冲冲, 陈静静, 王景涛. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550.
Houhu ZHANG, Xiaoli WU, Chongchong CHEN, Jingjing CHEN, Jingtao WANG. Preparation of 2D lamellar CD-MOF membranes for accurate separation of mixed solvents[J]. CIESC Journal, 2022, 73(10): 4539-4550.
图1 CD-MOF颗粒的三维结构、SEM图和苯甲酸调控的CD-MOF颗粒的SEM图
Fig.1 Three-dimensional structure of CD-MOF, and SEM images of CD-MOF particles and benzoic acid-mediated CD-MOF particles
图2 CD-MOF颗粒和层错结构的CD-MOF颗粒的N2 吸附等温线、XPS谱图、XRD谱图和TG曲线a—CD-MOF particles; b—CD-MOF particles with dislocation structure
Fig.2 N2 sorption isotherms, XPS spectra, XRD patterns and TG curves of CD-MOF particles and CD-MOF particles with dislocation structure
图4 CD-MOF膜的SEM表面、断面及断面的TEM及膜对不同溶剂的吸收率和动态接触角
Fig.4 Surface and cross-sectional SEM images, high-resolution TEM image, solvent uptake and dynamic contact angles of CD-MOF membranes
图5 CD-MOF膜对染料的截留率、不同厚度膜的渗透-选择性以及常见纯溶剂的通量实验
Fig.5 Dye rejection of CD-MOF membranes, perm-selectivity of membranes with different thickness and permeance of common pure solvents
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/ (L·m-2·h-1·bar-1) | 截留率/% | 文献 |
---|---|---|---|---|---|
MPCM | |||||
ZIF-8Gf-GOm | 亚甲基蓝 | 水 | 49.8 | 100 | [ |
亚甲基蓝 | |||||
E-MSTF-LTA | |||||
CD-MOF | 84.3 | 99.6 | this work |
表1 所制备膜与文献报道膜有机溶剂纳滤性能比较
Table 1 The details of organic solvent nanofiltration membranes for comparison
分离膜名称 | 分离染料 | 溶剂 | 渗透通量/ (L·m-2·h-1·bar-1) | 截留率/% | 文献 |
---|---|---|---|---|---|
MPCM | |||||
ZIF-8Gf-GOm | 亚甲基蓝 | 水 | 49.8 | 100 | [ |
亚甲基蓝 | |||||
E-MSTF-LTA | |||||
CD-MOF | 84.3 | 99.6 | this work |
1 | 刘建川, 汪建川, 杨建华. 化工生产中常见有机溶剂的危害与安全防治[J]. 化学工程与装备, 2010(11): 131, 152. |
Liu J C, Wang J C, Yang J H. Hazard and safety prevention of common organic solvents in chemical production[J]. Chemical Engineering & Equipment, 2010(11): 131, 152. | |
2 | Poliakoff M, Licence P. Green chemistry[J]. Nature, 2007, 450: 810-812. |
3 | 孙诗瑞, 杨傲, 石涛, 等. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589. |
Sun S R, Yang A, Shi T, et al. Research advances in thermally coupled intensification technology for special distillation[J]. CIESC Journal, 2020, 71(10): 4575-4589. | |
4 | Goodarzi S, Javaran E J, Rahnama M, et al. Techno-economic evaluation of a multi effect distillation system driven by low-temperature waste heat from exhaust flue gases[J]. Desalination, 2019, 460: 64-80. |
5 | 周国莉, 韩项珂, 武文佳, 等. 异质结构g-C3N4@AM层状膜构筑及纳滤性能研究[J]. 化工学报, 2022, 73(2): 941-950. |
Zhou G L, Han X K, Wu W J, et al. Construction heterostructure g-C3N4@AM lamellar membrane and its performance of organic solvent nanofiltation[J]. CIESC Journal, 2022, 73(2): 941-950. | |
6 | Lin G S, Yang J, Mou C Y, et al. Realizing ultrathin silica membranes with straight-through channels for high-performance organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2021, 627: 119224. |
7 | 高克, 许中煌, 洪昱斌, 等. 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J]. 化工学报, 2017, 68(5): 2177-2185. |
Gao K, Xu Z H, Hong Y B, et al. Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane[J]. CIESC Journal, 2017, 68(5): 2177-2185. | |
8 | Wang Q, Wu X, Chen J, et al. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration[J]. Chemical Engineering Science, 2020, 228: 116002. |
9 | Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
10 | Li X, Wang J, Bai N, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11: 4280. |
11 | Chen J, Wu X, Chen C, et al. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation[J]. Journal of Membrane Science, 2022, 648: 120382. |
12 | Amo-Ochoa P, Welte L, González-Prieto R, et al. Single layers of a multifunctional laminar Cu (Ⅰ, Ⅱ) coordination polymer[J]. Chemical Communications, 2010, 46(19): 3262-3264. |
13 | Peng Y, Li Y, Ban Y, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation[J]. Angewandte Chemie International Edition, 2017, 129(33): 9889-9893. |
14 | Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation[J]. Nature Communications, 2017, 8: 14460. |
15 | Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent[J]. Journal of the American Chemical Society, 2017, 139(27): 9136-9139. |
16 | Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewandte Chemie International Edition, 2009, 121(26): 4833-4837. |
17 | Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
18 | Cliffe M J, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(15): 5397-5404. |
19 | Holcroft J M, Hartlieb K J, Moghadam P Z, et al. Carbohydrate-mediated purification of petrochemicals[J]. Journal of the American Chemical Society, 2015, 137(17): 5706-5719. |
20 | Chakrabarty R, Mukherjee P S, Stang P J. Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles[J]. Chemical Reviews, 2011, 111(11): 6810-6918. |
21 | Villalobos L F, Huang T, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
22 | Li J, Gong J L, Zeng G M, et al. Thin-film composite polyester nanofiltration membrane with high flux and efficient dye/salts separation fabricated from precise molecular sieving structure of β-cyclodextrin[J]. Separation and Purification Technology, 2021, 276: 119352. |
23 | Choi K M, Jeon H J, Kang J K, et al. Heterogeneity within order in crystals of a porous metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(31): 11920-11923. |
24 | Cliffe M J, Wan W, Zou X, et al. Correlated defect nanoregions in a metal-organic framework[J]. Nature Communications, 2014, 5: 4176. |
25 | Wu H, Chua Y S, Krungleviciute V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. |
26 | Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewandte Chemie International Edition, 2009, 121(26): 4833-4837. |
27 | Li L, Wang J, Zhang Z, et al. Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2018, 11(2): 2543-2550. |
28 | Furukawa Y, Ishiwata T, Sugikawa K, et al. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks[J]. Angewandte Chemie International Edition, 2012, 124(42): 10718-10721. |
29 | Gonzales R R, Zhang L, Guan K, et al. Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation[J]. Desalination, 2021, 516: 115222. |
30 | Hartlieb K J, Holcroft J M, Moghadam P Z, et al. CD-MOF: a versatile separation medium[J]. Journal of the American Chemical Society, 2016, 138(7): 2292-2301. |
31 | Jadhav T, Fang Y, Liu C H, et al. Transformation between 2D and 3D covalent organic frameworks via reversible [2+2] cycloaddition[J]. Journal of the American Chemical Society, 2020, 142(19): 8862-8870. |
32 | Lyu H, Diercks C S, Zhu C, et al. Porous crystalline olefin-linked covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(17): 6848-6852. |
33 | Jadhav T, Fang Y, Patterson W, et al. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine[J]. Angewandte Chemie International Edition, 2019, 58(39): 13753-13757. |
34 | Smaldone R A, Forgan R S, Furukawa H, et al. Metal-organic frameworks from edible natural products[J]. Angewandte Chemie International Edition, 2010, 49(46): 8630-8634. |
35 | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
36 | Sang X, Liu D, Song J, et al. High-efficient liquid exfoliation of 2D metal-organic framework using deep-eutectic solvents[J]. Ultrasonics Sonochemistry, 2021, 72: 105461. |
37 | Ding L, Wei Y, Wang Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. |
38 | Li G, Qi Y, Lin H, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J]. Journal of Membrane Science, 2021, 635: 119470. |
39 | Jian M, Qiu R, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation[J]. Science Advances, 2020, 6(23): eaay3998. |
40 | Li Y, Wu Q, Guo X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11: 599. |
41 | Xu T, Wu B, Hou L, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J]. Journal of the American Chemical Society, 2022, 144: 10220-10229. |
42 | Sapkota B, Liang W, VahidMohammadi A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nature Communications, 2020, 11: 2747. |
43 | Li G, Qi Y, Lin H, et al. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent[J]. Journal of Membrane Science, 2021, 635: 119470. |
44 | Karan S, Samitsu S, Peng X, et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets[J]. Science, 2012, 335(6067): 444-447. |
45 | 赵胤, 邓广金, 李正, 等. 酸量的调变对烷基转移催化剂性能的影响[J]. 化工科技, 2012, 20(4): 31-33. |
Zhao Y, Deng G J, Li Z, et al. Effects of modification of acid amount on the performance of transalkylation catalyst[J]. Science & Technology in Chemical Industry, 2012, 20(4): 31-33. | |
46 | Wu X, Cui X, Wu W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 131(51): 18695-18700. |
47 | Huang T, Moosa B A, Hoang P, et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration[J]. Nature Communications, 2020, 11: 5882. |
48 | Gao T, Huang L, Li C, et al. Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration[J]. Carbon, 2017, 124: 263-270. |
49 | Sun S P, Chan S Y, Xing W, et al. Facile synthesis of dual-layer organic solvent nanofiltration (OSN) hollow fiber membranes[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3019-3023. |
50 | Chen J, Zhang J, Wu X, et al. Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization[J]. Journal of Materials Chemistry A, 2020, 8(18): 9160-9167. |
51 | Zhang W H, Yin M J, Zhao Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3): 337-343. |
52 | Gu B X, Liu Z, Zhang K, et al. Biomimetic asymmetric structural polyamide OSN membranes fabricated via fluorinated polymeric networks regulated interfacial polymerization[J]. Journal of Membrane Science, 2021, 625: 119112. |
53 | Wang Z, Zhu J, Xu S, et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving[J]. Journal of Membrane Science, 2021, 633: 119397. |
54 | Fei F, Cseri L, Szekely G, et al. Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16140-16147. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[5] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[9] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[10] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||