化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5638-5647.DOI: 10.11949/0438-1157.20221276
收稿日期:
2022-09-22
修回日期:
2022-12-02
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
左然
作者简介:
何晓崐(1987—),男,硕士,讲师,kenhe25@163.com
基金资助:
Xiaokun HE1(), Yuan XUE2,3, Ran ZUO4()
Received:
2022-09-22
Revised:
2022-12-02
Online:
2022-12-05
Published:
2023-01-17
Contact:
Ran ZUO
摘要:
利用量子化学的密度泛函理论,对MOCVD生长InN的气相反应路径进行较全面的计算分析,通过计算不同温度下各反应的Gibbs能差和反应能垒,分别从热力学和动力学角度确定从TMIn/NH3生长InN的主要气相反应路径。研究发现:当载气为N2时,InN生长的气相反应路径主要为热解路径与加合路径的竞争。在高温(T>873.0 K)时以TMIn的热解为主,在低温(T<602.4 K)时以TMIn与NH3的加合反应为主,在中温(602.4 K<T<873.0 K)时以加合物TMIn:NH3的分解反应为主。当载气为H2时,由于气相热解和表面反应将产生H和NH2自由基,H自由基将加速TMIn的热解,NH2自由基将与TMIn、DMIn等反应生成氨基物DMInNH2。H自由基还会与氨基物反应,在高温衬底附近生成InNH2,从而使表面反应前体由传统的MMIn和In变为InNH2。研究结果给出了InN MOCVD气相反应路径与温度的定量关系,以及H和NH2自由基的参与引起的新的气相反应路径。
中图分类号:
何晓崐, 薛园, 左然. MOCVD生长InN气相反应路径的量子化学研究[J]. 化工学报, 2022, 73(12): 5638-5647.
Xiaokun HE, Yuan XUE, Ran ZUO. Quantum chemistry study on gas reaction path in InN MOCVD growth[J]. CIESC Journal, 2022, 73(12): 5638-5647.
分子式 | 计算方法 | In-N键长/Å | In-C键长/Å | C-In-C键角/(°) | C-In-N键角/(°) | 文献 |
---|---|---|---|---|---|---|
TMIn:NH3 DMInNH2 | B3LYP/Lanl2dz B3LYP/In:3-21G(d,p)&AKR4 C、H、N:6-311G(d,p) M062X/6-31G(d)/LanL2DZ B3LYP/Lanl2dz B3LYP/In:3-21G(d,p)&AKR4 C、H、N:6-311G(d,p) M062X /6-31G(d)/LanL2DZ | 2.368 2.450 2.394 1.975 2.058 1.977 | 2.176 2.223 2.170 2.147 2.196 2.143 | 118.2 119.0 118.8 127.5 131.0 126.5 | 96.0 96.3 116.5 115.0 116.8 | [ [ 本文 [ [ 本文 |
表1 优化后的TMIn:NH3、DMInNH2键长和键角对比
Table 1 Comparisons of optimized bond lengths and bond angles for TMIn:NH3 and DMInNH2
分子式 | 计算方法 | In-N键长/Å | In-C键长/Å | C-In-C键角/(°) | C-In-N键角/(°) | 文献 |
---|---|---|---|---|---|---|
TMIn:NH3 DMInNH2 | B3LYP/Lanl2dz B3LYP/In:3-21G(d,p)&AKR4 C、H、N:6-311G(d,p) M062X/6-31G(d)/LanL2DZ B3LYP/Lanl2dz B3LYP/In:3-21G(d,p)&AKR4 C、H、N:6-311G(d,p) M062X /6-31G(d)/LanL2DZ | 2.368 2.450 2.394 1.975 2.058 1.977 | 2.176 2.223 2.170 2.147 2.196 2.143 | 118.2 119.0 118.8 127.5 131.0 126.5 | 96.0 96.3 116.5 115.0 116.8 | [ [ 本文 [ [ 本文 |
反应 | 本文计算值/(kcal/mol) | 文献值/(kcal/mol) | 方法 | 文献 |
---|---|---|---|---|
G4(0 K) | -20.17 | -17.4 | B3LYP/Lanl2dz | [ |
-19.6 | MP2/Lanl2dz | [ | ||
-20.0 | CCSD(T) Lanl2dz//B3LYP/Lanl2dz | [ | ||
-19.8 | CCSD(T) Lanl2dz//MP2/Lanl2dz | [ | ||
G4(298.15 K) | -20.62 | -16.27 | B3LYP/In:3-21G(d,p)&AKR4 | [ |
-16.08 | B3LYP /LanL2DZ* | [ | ||
-18.22 | B3LYP /LanL2DZ* | [ | ||
G6(298.15 K) | -16.44 | -14.27 | B3LYP/In:3-21G(d,p)&AKR4 | [ |
-18.88 | B3LYP /LanL2DZ* | [ | ||
-19.09 | B3LYP /LanL2DZ* | [ |
表2 反应G4、G6的ΔH的计算值与文献值的对比
Table 2 Comparisons of the ΔH of reactions G4, G6 calculated in this study and reported from literatures
反应 | 本文计算值/(kcal/mol) | 文献值/(kcal/mol) | 方法 | 文献 |
---|---|---|---|---|
G4(0 K) | -20.17 | -17.4 | B3LYP/Lanl2dz | [ |
-19.6 | MP2/Lanl2dz | [ | ||
-20.0 | CCSD(T) Lanl2dz//B3LYP/Lanl2dz | [ | ||
-19.8 | CCSD(T) Lanl2dz//MP2/Lanl2dz | [ | ||
G4(298.15 K) | -20.62 | -16.27 | B3LYP/In:3-21G(d,p)&AKR4 | [ |
-16.08 | B3LYP /LanL2DZ* | [ | ||
-18.22 | B3LYP /LanL2DZ* | [ | ||
G6(298.15 K) | -16.44 | -14.27 | B3LYP/In:3-21G(d,p)&AKR4 | [ |
-18.88 | B3LYP /LanL2DZ* | [ | ||
-19.09 | B3LYP /LanL2DZ* | [ |
Reaction | ΔG /(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G1 | 59.03 | 52.53 | 45.02 | 37.54 | 30.12 |
G2 | 18.95 | 13.31 | 6.76 | 0.21 | -6.31 |
G3 | 47.28 | 42.42 | 36.76 | 31.08 | 25.41 |
表3 TMIn热解反应的Gibbs能差ΔG
Table 3 The changes of Gibbs energy ΔG in TMIn pyrolysis
Reaction | ΔG /(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G1 | 59.03 | 52.53 | 45.02 | 37.54 | 30.12 |
G2 | 18.95 | 13.31 | 6.76 | 0.21 | -6.31 |
G3 | 47.28 | 42.42 | 36.76 | 31.08 | 25.41 |
Reaction | ΔG/(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G13 | -17.27 | -17.00 | -16.88 | -16.87 | -16.93 |
G14 | -17.02 | -17.35 | -17.92 | -18.60 | -19.34 |
G15 | -22.17 | -22.39 | -22.75 | -23.16 | -23.59 |
G16 | -76.30 | -69.54 | -61.91 | -54.42 | -47.05 |
G17 | -35.97 | -30.66 | -24.69 | -18.81 | -13.03 |
G18 | -69.45 | -64.82 | -59.52 | -54.25 | -49.00 |
表4 TMIn及其热解产物与NH2自由基反应的Gibbs能差ΔG
Table 4 The changes of Gibbs energy ΔG in TMIn pyrolysis with NH2 radical
Reaction | ΔG/(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G13 | -17.27 | -17.00 | -16.88 | -16.87 | -16.93 |
G14 | -17.02 | -17.35 | -17.92 | -18.60 | -19.34 |
G15 | -22.17 | -22.39 | -22.75 | -23.16 | -23.59 |
G16 | -76.30 | -69.54 | -61.91 | -54.42 | -47.05 |
G17 | -35.97 | -30.66 | -24.69 | -18.81 | -13.03 |
G18 | -69.45 | -64.82 | -59.52 | -54.25 | -49.00 |
Reaction | ΔG/(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G19 | -43.49 | -34.62 | -24.43 | -14.26 | -4.14 |
G20 | -23.20 | -14.60 | -4.91 | 4.62 | 14.00 |
表5 DMInNH2二聚反应(G19)和三聚反应(G20)的Gibbs能差ΔG
Table 5 The changes of Gibbs energy ΔG in dimerization (G19) and trimerization (G20) of DMInNH2
Reaction | ΔG/(kcal/mol) | ||||
---|---|---|---|---|---|
298.15 K | 473.15 K | 673.15 K | 873.15 K | 1073.15 K | |
G19 | -43.49 | -34.62 | -24.43 | -14.26 | -4.14 |
G20 | -23.20 | -14.60 | -4.91 | 4.62 | 14.00 |
1 | 郑有炓, 江风益, 张荣, 等. 第三代半导体材料与器件进展[M]. 南京: 南京大学出版社, 2015. |
Zheng Y L, Jiang F Y, Zhang R, et al. Research Progress of the Third Generation Semiconductor Materials and Devices[M]. Nanjing: Nanjing University Press, 2015. | |
2 | 陆大成, 段树坤. 金属有机化合物气相外延基础及应用[M]. 北京: 科学出版社, 2009. |
Lu D C, Duan S K. Basic and Applications of Metal-organic Compound Gas Phase Epitaxy[M]. Beijing: Science Press, 2009. | |
3 | Dauelsberg M, Talalaev R. Progress in modeling of Ⅲ-nitride MOVPE[J]. Progress in Crystal Growth and Characterization of Materials, 2020, 66(3), 100486. |
4 | Sengupta D, Mazumder S, Kuykendall W, et al. Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth[J]. Journal of Crystal Growth, 2005, 279(3/4): 369-382. |
5 | Wang G T, Creighton J R. Complex formation of trimethylaluminum and trimethylgallium with ammonia: evidence for a hydrogen-bonded adduct[J]. Journal of Physical Chemistry A, 2006, 110(3): 1094-1099. |
6 | Simka H, Willis B G, Lengyel I, et al. Computational chemistry predictions of reaction processes in organometallic vapor phase epitaxy[J]. Progress in Crystal Growth and Characterization of Materials, 1997, 35(2/4): 117-149. |
7 | 张红, 左然. GaN-MOVPE生长的气相反应中自由基的作用[J]. 中国科学: 技术科学, 2019, 49(8): 939-946. |
Zhang H, Zuo R. Effect of radicals on gas phase reactions in GaN MOVPE process[J]. Scientia Sinica Technologica, 2019, 49(8): 939-946. | |
8 | 张禹, 王克昌, 张荣, 等. GaN MOCVD生长机制的量子化学计算[J]. 材料导报, 2007(9): 127-129. |
Zhang Y, Wang K C, Zhang R, et al. Quantum chemistry calculation of GaN growth mechanism by MOCVD[J]. Materials Reports, 2007(9): 127-129. | |
9 | Creighton J R, Wang G T. Reversible adduct formation of trimethylgallium and trimethylindium with ammonia[J]. Journal of Physical Chemistry A, 2005, 109(1): 133-137. |
10 | Sekiguchi K, Shirakawa H, Chokawa H, et al. Thermodynamic considerations of the vapor phase reactions in Ⅲ-nitride metal organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2017, 56(4S): 04CJ04. |
11 | Nakamura K, Makino O, Tachibana A, et al. Quantum chemical study of parasitic reaction in Ⅲ-Ⅴ nitride semiconductor crystal growth[J]. Journal of Organometallic Chemistry, 2000, 611(1/2): 514-524. |
12 | Thon A, Kuech T F. High temperature adduct formation of trimethylgallium and ammonia[J]. Applied Physics Letters, 1996, 69(55): 55-57. |
13 | Cavallotti C, Moscatelli D, Masi M, et al. Accelerated decomposition of gas phase metal organic molecules determined by radical reactions[J]. Journal of Crystal Growth, 2004, 266(1/2/3): 363-370. |
14 | McDaniel A H, Allendorf M D. Autocatalytic behavior of trimethylindium during thermal decomposition[J]. Chemistry of Materials, 2000, 12(2): 450-460. |
15 | Creighton J R, Wang G T, Breiland W G, et al. Nature of the parasitic chemistry during AlGaInN OMVPE[J]. Journal of Crystal Growth, 2004, 261(2/3): 204-213. |
16 | Zhang H, Zuo R, Zhang G Y. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth[J]. Journal of Crystal Growth, 2017, 478(15): 193-204. |
17 | Moscatelli D, Caccioppoli P, Cavallotti C. Ab initio study of the gas phase nucleation mechanism of GaN[J]. Applied Physics Letters, 2005, 86(9): 091106. |
18 | Creighton J R, Wang G T, Coltrin M E. Fundamental chemistry and modeling of group-Ⅲ nitride MOVPE[J]. Journal of Crystal Growth, 2007, 298: 2-7. |
19 | Tan A K, Hamzah A, Ahmad M A, et al. Recent advances and challenges in the MOCVD growth of indium gallium nitride: a brief review[J]. Materials Science in Semiconductors Processing, 2022, 143: 106545. |
20 | Parikh R P, Adomaitis R A. An overview of gallium nitride growth chemistry and its effect on reactor design: application to a planetary radial-flow CVD system[J]. Journal of Crystal Growth, 2006, 286(2): 259-278. |
21 | Zhang H, Zuo R, Zhong T T, et al. Quantum chemistry study on gas reaction mechanism in AlN MOVPE growth[J]. Journal of Physical Chemistry A, 2020, 124(15): 2961-2971. |
22 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP]. 2013. |
23 | Lu T, Chen Q X. Shermo: a general code for calculating molecular thermochemistry properties[J]. Computational and Theoretical Chemistry, 2021, 1200: 113249. |
24 | Alecu I M, Zheng J, Zhao Y, et al. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries[J]. Journal of Chemical Theory and Computation, 2010, 6(9): 2872-2887. |
25 | Atkins P, Panla J D. Atkins' Physical Chemistry[M]. New York: Oxford University Press, 2002. |
26 | Tzeng Y R, Raghunath P, Chen S C, et al. Computational study of reaction pathways for the formation of indium nitride from trimethylindium with HN3: comparison of the reaction with NH3 and that on TiO2 rutile (110) surface[J]. Journal of Physical Chemistry A, 2007, 111(29): 6781-6788. |
27 | Cardelino B H, Moore C E, Cardelino C A, et al. Theoretical study of indium compounds of interest for organometallic chemical vapor deposition[J]. Journal of Physical Chemistry A, 2001, 105(5): 849-868. |
28 | Ikenaga M, Nakamura K, Tachibana A, et al. Quantum chemical study of gas-phase reactions of trimethylaluminium and triethylaluminium with ammonia in Ⅲ-Ⅴ nitride semiconductor crystal growth[J]. Journal of Crystal Growth, 2002, 237/238/239: 936-941. |
29 | Ohkawa K, Ichinohe F, Watanabe T, et al. Metalorganic vapor-phase epitaxial growth simulation to realize high quality and high-In-content InGaN alloy[J]. Journal of Crystal Growth, 2019, 512: 69-73. |
30 | Zuo R, Yu H Q, Xu N, et al. Influence of gas mixing and heating on gas-phase reactions in GaN MOCVD growth[J]. ECS Journal of Solid State Science and Technology, 2012, 1: 46. |
31 | Moscatelli D, Cavallotti C. Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE[J]. Journal of Physical Chemistry A, 2007, 111(21): 4620-4631. |
32 | Jacko M G, Price S J W. The Pyrolysis of trimethylindium[J]. Canadian Journal of Chemistry, 1964, 42(5): 1198-1205. |
[1] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[2] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[3] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[4] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[5] | 杨庆云, 李青松, 陈泽铭, 邓靖, 李玉瑛, 杨帆, 陈国元, 李国新. UV/PMS、UV/PDS、UV/SPC工艺降解尼泊金甲酯[J]. 化工学报, 2023, 74(3): 1322-1331. |
[6] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[7] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[8] | 靳文章, 张玉玲, 贾晓宇. 电化学高级氧化对HEDP的降解效能研究[J]. 化工学报, 2022, 73(9): 4062-4069. |
[9] | 邓靖, 杨庆云, 陈民杰, 李青松, 杨帆, 陈国元, 李国新. UV-LED/NaClO工艺降解尼泊金甲酯:不同活性物种的作用[J]. 化工学报, 2022, 73(9): 4113-4121. |
[10] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[11] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[12] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[13] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[14] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[15] | 肖习羽, 李青松, 吴俊文, 李国新, 陈国元. VUV/UV/NaClO工艺降解百里香酚协同效应及活性物质贡献[J]. 化工学报, 2022, 73(5): 2233-2241. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 268
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||