1 |
孙旭冉,赵毅,李钊, 等. 氧化法同时脱除烟气中多污染物研究进展[J]. 现代化工, 2020, 40(12): 23-27.
|
|
Sun X R, Zhao Y, Li Z, et al. Advances on simultaneous removal of multiple pollutants from flue gas by oxidation method [J]. Modern Chemical Industry, 2020, 40(12): 23-27.
|
2 |
单良, 尹荣强, 王慧, 等. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899.
|
|
Shan L, Yin R Q, Wang H, et al. Preparation of VMoTi/glass fiber catalytic filter-cloth and research on its dust and NOx synergistic removal performance[J]. CIESC Journal, 2021, 72(9): 4892-4899.
|
3 |
张霄玲, 鲍佳宁, 李运甲, 等. 工业MnOx颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报, 2020, 71(11): 5169-5177.
|
|
Zhang X L, Bao J N, Li Y J, et al. Preparation and industrial application of MnOx particle catalyst for low temperature denitration[J]. CIESC Journal, 2020, 71(11): 5169-5177.
|
4 |
汤常金, 孙敬方, 董林. 超低温(< 150℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884.
|
|
Tang C J, Sun J F, Dong L. Recent progress on elimination of NOx from flue gas via SCR technology under ultra-low temperatures (< 150℃)[J]. CIESC Journal, 2020, 71(11): 4873-4884.
|
5 |
Zhang S T, Pang L, Chen Z. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: current status, challenges, and future perspectives[J]. Applied Catalysis A: General, 2020, 607: 117855-117857.
|
6 |
甄铁丽, 李永红. 镧改性Cu-SSZ-13分子筛用于氨选择性催化还原催化剂研究[J]. 石油炼制与化工, 2020, 51(8): 50-55.
|
|
Zhen T L, Li Y H. Study on lanthanum modified Cu-SSZ-13 molecular sieve as NH3-SCR catalyst[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 50-55.
|
7 |
胥昌懋, 高深, 蒋涵. 水热老化对Cu-SSZ-13催化剂NH3-SCR性能影响的试验研究[J]. 车用发动机, 2020(4): 63-69+75.
|
|
Xu C M, Gao S, Jiang H. Effect of hydrothermal aging on NH3-SCR performance of Cu-SSZ-13 catalyst[J]. Vehicle Engine, 2020(4): 63-69+75.
|
8 |
郭晶晶, 李俊华, 彭悦, 等. 铜前驱体对Cu/SSZ-13催化剂选择性催化氧化NH3性能的影响[J]. 环境科学学报, 2019, 39(11): 3724-3731.
|
|
Guo J J, Li J H, Peng Y, et al. Effect of copper precursors on the catalytic performance of Cu/SSZ-13 catalysts for the selective catalytic oxidation of ammonia[J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3724-3731.
|
9 |
Greenaway A G, Marberger A, Thetford A, et al. Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy[J]. Chemical Science, 2020, 11(2): 447-455.
|
10 |
Wang A Y, Olsson L. Insight into the SO2 poisoning mechanism for NOx removal by NH3-SCR over Cu/LTA and Cu/SSZ-13[J]. Chemical Engineering Journal, 2020, 395: 125048-125059.
|
11 |
陈佳炜, 赵茹, 周仁贤. 原位合成Cu-SSZ-13催化剂: 硅铝比对NH3-SCR:催化性能的影响[J]. 工业催化, 2018, 26(11): 67-70.
|
|
Chen J W, Zhao R, Zhou R X. In-situ synthesis of Cu-SSZ-13 catalyst: effect of Si/Al ratio on catalytic performance for NH3-SCR[J]. Industrial Catalysis, 2018, 26(11): 67-70.
|
12 |
王聪颖, 周皞, 杨迪, 等. 一步水热合成Cu-SSZ-13分子筛选择性催化C3H6还原NO[J]. 无机化学学报, 2021, 37(5): 853-866.
|
|
Wang C Y, Zhou H, Yang D. et al. Selective catalytic reduction of NO with C3H6 over one-step hydrothermal synthesized Cu-SSZ-13 catalysts[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(5): 853-866.
|
13 |
Kwak J H, Varga T, Penden C H F, et al. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study[J]. Journal of Catalysis, 2014, 314: 83-93.
|
14 |
Lv W, Wang S, Wang P F, et al. Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations[J]. Journal of Catalysis, 2021, 393: 190-201.
|
15 |
Zhu H Y, Kwak J H, Peden C H F, et al. In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite[J]. Catalysis Today, 2013, 205: 16-23.
|
16 |
Ma L, Cheng Y S, Cavataio G, et al. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2014, 156/157: 428-437.
|
17 |
Szanyi J, Kwak J H, Zhu H, et al. Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2368-2380.
|
18 |
Luo J Y, Wang D, Kumar A, et al. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning[J]. Catalysis Today, 2016, 267: 3-9.
|
19 |
谢利娟, 刘福东, 石晓燕, 等. 焙烧程序对一步合成Cu-SSZ-13催化剂NH3-SCR性能的影响[J]. 化工进展, 2016, 35(8): 2464-2468.
|
|
Xie L J, Liu F D, Shi X Y, et al. Influence of calcination procedure on the one-pot synthesized Cu-SSZ-13 catalysts and their performance in NH3-SCR[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2464-2468.
|
20 |
Wang D, Jangjou Y, Liu Y, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445.
|
21 |
Deng D, Deng S J, He D D, et al. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR[J]. Journal of Rare Earths, 2021, 39(8): 969-978.
|
22 |
Gao F, Szanyi J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194.
|
23 |
Zhou W, Liu J X, Wang J L, et al. Enhancing propane aromatization performance of Zn/H-ZSM-5 zeolite catalyst with Pt promotion: effect of the third metal additive-Sn[J]. Catalysis Letters, 2019, 149(8): 2064-2077.
|
24 |
Bordiga S, Ugliengo P, Damin A, et al. Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: vibrational properties and theoretical modelling[J]. Topics in Catalysis, 2001, 15(1): 43-52.
|
25 |
Kolyagin Y G, Ordomsky V V, Khimyak Y Z, et al. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques[J]. Journal of Catalysis, 2006, 238(1): 122-133.
|
26 |
Bordiga S, Roggero I, Ugliengo P, et al. Characterisation of defective silicalites[J]. Journal of the Chemical Society, Dalton Transactions, 2000(21): 3921-3929.
|
27 |
Liu J X, He N, Zhou W, et al. Isobutane aromatization over a complete Lewis acid Zn/HZSM-5 zeolite catalyst: performance and mechanism[J]. Catalysis Science & Technology, 2018, 8(16): 4018-4029.
|
28 |
Lin L, Zhang X T, He N, et al. Operando dual beam FTIR study of hydroxyl groups and Zn species over defective HZSM-5 zeolite supported zinc catalysts[J]. Catalysts, 2019, 9(1): 100.
|
29 |
王必勋, 伏义路. Cu-ZSM-5上Cu+位置的CO吸附红外光谱表征[J]. 催化学报, 1995, 16(1): 38-43.
|
|
Wang B X, Fu Y L. Characterization of Cu+ sites on Cu-ZSM-5 by CO adsorption infrared spectroscopy[J]. Chinese Journal of Catalysis, 1995, 16(1): 38-43.
|
30 |
Hum Kwak J, Zhu H Y, Lee J H, et al. Two different cationic positions in Cu-SSZ-13[J]. Chemical Communications, 2012, 48(39): 4758-4760.
|