化工学报 ›› 2022, Vol. 73 ›› Issue (2): 847-856.DOI: 10.11949/0438-1157.20211141
收稿日期:
2021-08-12
修回日期:
2021-11-23
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
肖睿
作者简介:
罗俊仪(1995—),男,硕士研究生,基金资助:
Junyi LUO(),Shiliang WU,Rui XIAO()
Received:
2021-08-12
Revised:
2021-11-23
Online:
2022-02-05
Published:
2022-02-18
Contact:
Rui XIAO
摘要:
双碳背景下,采用生物质基航空燃油替代传统航油成为当前的研究热点之一。生物质基航油组分与传统航油不同,生物质基航油的环烷烃由木质素加氢脱氧得到,与传统航油中的环烷烃在结构上有所差别。不同结构的环烷烃的燃烧特性有很大差别,基于此,本文通过可变压缩比内燃机研究了四种典型生物质基环烷烃(环戊烷、环己烷、乙基环己烷以及十氢萘)与RP-3航空航油掺混后的低温燃烧特性及其在压燃式发动机中对燃烧过程的影响以研究燃料单一性的可行性。结果表明提高掺混比例,十氢萘对燃烧效果有明显的促进作用,着火点提前,放热峰值有所增加,放热更为集中;乙基环己烷有着与航油相似的燃烧特性,而环己烷与环戊烷会使燃烧相位推迟,放热率下降,增大混合燃料的易压燃难度,不利于燃烧。研究对于木质素催化加氢制备环烷烃和生物质基环烷烃具有重要的指导意义。
中图分类号:
罗俊仪, 吴石亮, 肖睿. 环烷烃与航空煤油掺混燃烧特性研究[J]. 化工学报, 2022, 73(2): 847-856.
Junyi LUO, Shiliang WU, Rui XIAO. Study on combustion characteristics of cycloalkanes mixed with aviation kerosene[J]. CIESC Journal, 2022, 73(2): 847-856.
组分(C数) | 生物质航空航油/% | 传统航空航油/% |
---|---|---|
C5 | 4.69 | 0 |
C6 | 20.28 | 0 |
C7 | 18.59 | 0 |
C8 | 22.47 | 8.43 |
C9 | 7.24 | 31.09 |
C10 | 15.49 | 19.63 |
C11 | 0 | 10.52 |
C12 | 0 | 16.11 |
C13 | 0 | 12.61 |
表1 生物航油与传统航油环烷烃组分差异
Table 1 Difference of naphthenic hydrocarbon components between biological aviation oil and traditional aviation oil
组分(C数) | 生物质航空航油/% | 传统航空航油/% |
---|---|---|
C5 | 4.69 | 0 |
C6 | 20.28 | 0 |
C7 | 18.59 | 0 |
C8 | 22.47 | 8.43 |
C9 | 7.24 | 31.09 |
C10 | 15.49 | 19.63 |
C11 | 0 | 10.52 |
C12 | 0 | 16.11 |
C13 | 0 | 12.61 |
Compound | Formula | Ring | BP/℃ | RON | MON |
---|---|---|---|---|---|
环戊烷(CP) | C5H10 | 49.2 | 85 | 82.3 | |
环己烷(CH) | C6H12 | 80.7 | 83.0 | 77.2 | |
乙基环己烷(ECH) | C8H16 | 130 | 48 | 45 | |
十氢萘(Trans) | C10H18 | 190 | 42/34 | 36/34 | |
航空航油(RP-3) | C7~C16 | — | — | 46 |
表2 环烷烃部分理化性质参数
Table 2 Physical and chemical parameters of cycloalkanes
Compound | Formula | Ring | BP/℃ | RON | MON |
---|---|---|---|---|---|
环戊烷(CP) | C5H10 | 49.2 | 85 | 82.3 | |
环己烷(CH) | C6H12 | 80.7 | 83.0 | 77.2 | |
乙基环己烷(ECH) | C8H16 | 130 | 48 | 45 | |
十氢萘(Trans) | C10H18 | 190 | 42/34 | 36/34 | |
航空航油(RP-3) | C7~C16 | — | — | 46 |
体积比 | 环戊烷 | 环己烷 | 乙基环己烷 | 十氢萘 |
---|---|---|---|---|
10∶90 | PR10 | CR10 | ER10 | TR10 |
20∶80 | PR20 | CR20 | ER20 | TR20 |
30∶70 | PR30 | CR30 | ER30 | TR30 |
表3 掺混燃料命名
Table 3 Nomenclature of blended fuels
体积比 | 环戊烷 | 环己烷 | 乙基环己烷 | 十氢萘 |
---|---|---|---|---|
10∶90 | PR10 | CR10 | ER10 | TR10 |
20∶80 | PR20 | CR20 | ER20 | TR20 |
30∶70 | PR30 | CR30 | ER30 | TR30 |
15 | Sheng H Q, Huang X B, Ji Y, et al. Synergistic promotion of multi-component RP-3 kerosene low-temperature ignition with addition of radical activator[J]. International Journal of Hydrogen Energy2021, 46(53): 27207-27220. |
16 | Garrett R K. Is a single fuel on the battlefield still a viable option? [R]. Executive Research Project, 1993. |
17 | Kang D, Kim D, Kalaskar V, et al. Experimental characterization of jet fuels under engine relevant condition (Part 1): Effect of chemical composition on autoignition of conventional and alternative jet fuels[J]. Fuel, 2019, 239: 1388-1404. |
18 | JP-8 The Single Fuel Forward[R]. U. S. Army Tank-automotive and Armaments Command & Armaments Research, Development and Engineering Center. 2001. |
19 | 刘伍权, 张光超, 杨春浩, 等. RP-3航空煤油在高压共轨柴油机中的应用[J]. 军事交通学院学报, 2017, 19(11): 40-45. |
Liu W Q, Zhang G C, Yang C H, et al. Application of RP-3 aviation kerosene in high pressure common rail diesel engine[J]. Journal of Military Transportation University, 2017, 19(11): 40-45. | |
20 | Yang Y, Boehman A L, Simmie J M. Uniqueness in the low temperature oxidation of cycloalkanes[J]. Combustion and Flame, 2010, 157(12): 2357-2368. |
21 | Kang D, Lilik G, Dillstrom V, et al. Impact of branched structures on cycloalkane ignition in a motored engine: detailed product and conformational analyses[J]. Combustion and Flame, 2015, 162(4): 877-892. |
22 | Kang D, Bohac S V, Boehman A L, et al. Autoignition studies of C5 isomers in a motored engine[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3597-3604. |
23 | Szybist J P, Boehman A L, Haworth D C, et al. Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment[J]. Combustion and Flame, 2007, 149(1/2): 112-128. |
24 | Yang Y, Boehman A L. Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine[J]. Proceedings of the Combustion Institute, 2009, 32(1): 419-426. |
25 | Kang D, Kalaskar V, Kim D, et al. Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber[J]. Fuel, 2016, 184: 565-580. |
26 | Pitz W J, Naik C V, Mhaolduin T N, et al. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2007, 31(1): 267-275. |
1 | 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420. |
Zou C N, Xiong B, Xue H Q, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420. | |
27 | Natelson R H, Kurman M S, Cernansky N P, et al. Low temperature oxidation of n-butylcyclohexane[J]. Combustion and Flame, 2011, 158(12): 2325-2337. |
28 | Zhou Y, Gan Y H, Gou X L. Chemical kinetic modeling study of methyl esters oxidation: improvement on the prediction of early CO2 formation[J]. Fuel, 2020, 279: 118383. |
29 | 周毅, 甘云华, 杨泽亮. 采用多元非线性回归法的生物柴油动力学分析[J]. 哈尔滨工程大学学报, 2020, 41(7): 1036-1042. |
Zhou Y, Gan Y H, Yang Z L. Kinetic analysis of biodiesel based on multivariate nonlinear regression method[J]. Journal of Harbin Engineering University, 2020, 41(7): 1036-1042. | |
30 | Zhong W J, Tamilselvan P, Wang Q, et al. Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions[J]. Energy, 2018, 153: 349-358. |
31 | Pachiannan T, Zhong W J, Xuan T M, et al. Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber[J]. Renewable Energy, 2019, 140: 761-771. |
32 | Jiang Z W, Gan Y H, Ju Y G, et al. Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor[J]. Energy, 2019, 179: 843-849. |
33 | Gillet S, Aguedo M, Petitjean L, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chemistry, 2017, 19(18): 4200-4233. |
34 | Chen X, Guan W X, Tsang C W, et al. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions [J]. Catalysts, 2019, 9(6): 488. |
35 | Zhang J G. Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds[J]. Green Energy & Environment, 2018, 3(4): 328-334. |
36 | Zhou Y, Gan Y H, Zhang C Y, et al. Numerical study for influence of ozone on the combustion of biodiesel surrogates in a homogeneous charge compression ignition engine[J]. Fuel Processing Technology, 2022, 225: 107039. |
37 | 石敦峰, 甘云华, 罗燕来, 等. 乙醇浓度和应变率对扩散火焰特性的数值分析[J]. 化工学报, 2021, 72(5): 2801-2809. |
Shi D F, Gan Y H, Luo Y L, et al. Numerical analysis of ethanol concentration and strain rate on diffusion flame characteristics[J]. CIESC Journal, 2021, 72(5): 2801-2809. | |
2 | Schurer A P, Mann M E, Hawkins E, et al. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals[J]. Nature Climate Change, 2017, 7(8): 563-567. |
3 | 秦曼曼, 孙仁金, 李喆, 等. 生物航空煤油发展问题及对策研究[J].现代化工, 2019, 39(11): 1-4. |
Qin M M, Sun R J, Li Z, et al. Problems in development of bio-based aviation kerosene and corresponding countermeasures[J]. Modern Chemical Industry, 2019, 39(11): 1-4. | |
4 | Li C, Zhao X, Wang A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
5 | Guan W X, Jin S H, Li C, et al. Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14034-14042. |
6 | 陈伦刚, 张兴华, 马隆龙, 等. 木质纤维素解聚平台分子催化合成航油技术的进展[J]. 化工进展, 2019, 38(3): 1269-1282. |
Chen L G, Zhang X H, Ma L L, et al. Progress in aviation biofuel technology by catalysis synthesis of platform molecules from lignocelluloses depolymerization[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1269-1282. | |
7 | Li H, Riisager A, Saravanamurugan S, et al. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals[J]. ACS Catalysis, 2018, 8(1): 148-187. |
8 | Zakzeski J, Bruijnincx P C, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Reviews, 2010, 110(6): 3552-3599. |
9 | 朱重阳, 甘志文. 生物质组分对航空煤油基础燃烧特性的影响研究[J]. 可再生能源, 2017, 35(12): 1751-1758. |
Zhu C Y, Gan Z W. Study on the effects of biomass components on the basic combustion characteristics of aviation kerosene[J]. Renewable Energy Resources, 2017, 35(12): 1751-1758. | |
10 | Yang J, Xin Z, He Q, et al. An overview on performance characteristics of bio-jet fuels[J]. Fuel, 2019, 237: 916-936. |
11 | Yang Y, Boehman A L, Simmie J M. Effects of molecular structure on oxidation reactivity of cyclic hydrocarbons: experimental observations and conformational analysis[J]. Combustion and Flame, 2010, 157(12): 2369-2379. |
12 | Soloiu V, Wiley J T, Gaubert R, et al. Fischer-Tropsch coal-to-liquid fuel negative temperature coefficient region (NTC) and low-temperature heat release (LTHR) in a constant volume combustion chamber (CVCC)[J]. Energy, 2020, 198: 117288. |
13 | Wang H W, Oehlschlaeger M A. Autoignition studies of conventional and Fischer-Tropsch jet fuels[J]. Fuel, 2012, 98: 249-258. |
14 | Mao Y B, Yu L, Wu Z Y, al et, Experimental and kinetic modeling study of ignition characteristics of RP-3kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combustion and Flame, 2019, 203: 157-169. |
[1] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[2] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[3] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[4] | 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738. |
[5] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[6] | 高亚慧, 夏淑倩. CO2-烃类液相混合物比定容热容的实验与模型研究[J]. 化工学报, 2022, 73(11): 4838-4849. |
[7] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
[8] | 张家庆, 刘朝晖, 李宇, 宋晨阳. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
[9] | 于瑞广, 刘杰, 马彪. 甲醇对丙烷/氧气混合气爆炸极限的影响[J]. 化工学报, 2021, 72(6): 3411-3420. |
[10] | 牛晓坡, 徐爽, 李晓雪, 冯富祥, 王庆法. 中空Pt/ZSM-5催化剂用于愈创木酚加氢脱氧合成环烷烃[J]. 化工学报, 2021, 72(5): 2616-2625. |
[11] | 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. |
[12] | 张昕怡,许蕊,王钰棋,张瑜,王飞,李迅. 新型嗜热耐碱脂肪酶的纯化表征及应用[J]. 化工学报, 2020, 71(11): 5246-5255. |
[13] | 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201. |
[14] | 张泽, 程军, 仇亿, 郭浩, 杨卫娟, 刘建忠. 碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J]. 化工学报, 2019, 70(8): 2919-2927. |
[15] | 靳宏伟,翟丹丹,王心,赵爽,孟祥阳,何玥颖,沈洋,惠明. 石墨烯/聚苯胺修饰阳极对微生物燃料电池性能的影响[J]. 化工学报, 2019, 70(6): 2343-2350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||