化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2616-2625.DOI: 10.11949/0438-1157.20210191
牛晓坡1,2(),徐爽1,2(),李晓雪1,2,冯富祥1,2,王庆法1,2()
收稿日期:
2021-01-31
修回日期:
2021-03-09
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
王庆法
作者简介:
牛晓坡(1995—),男,博士研究生,基金资助:
NIU Xiaopo1,2(),XU Shuang1,2(),LI Xiaoxue1,2,FENG Fuxiang1,2,WANG Qingfa1,2()
Received:
2021-01-31
Revised:
2021-03-09
Online:
2021-05-05
Published:
2021-05-05
Contact:
WANG Qingfa
摘要:
采用溶解-重结晶方法合成了不同硅铝比具有级孔壳的中空ZSM-5分子筛,并对其负载Pt催化剂(Pt/HZ-x)催化愈创木酚加氢脱氧制备环烷烃性能进行了探究。通过X射线晶体衍射(XRD)、场发射扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)、氮气吸附脱附(N2-BET)、氨气程序升温脱附(NH3-TPD)和X射线光电子能谱(XPS)对合成的系列催化剂进行了物化性质表征。得益于特殊的中空级孔结构,中空ZSM-5分子筛具有高外比表面积和介孔孔容,有利于促进活性金属Pt的分散和增强反应物的传质。Pt/HZ-x催化剂表现出了优异的催化性能和愈创木酚加氢脱氧活性,在220℃的低温即可以达到100%的环烷烃选择性。另外,随着分子筛载体酸性的减弱,愈创木酚加氢脱氧产物的二次反应程度降低,增大了环己烷的选择性。
中图分类号:
牛晓坡, 徐爽, 李晓雪, 冯富祥, 王庆法. 中空Pt/ZSM-5催化剂用于愈创木酚加氢脱氧合成环烷烃[J]. 化工学报, 2021, 72(5): 2616-2625.
NIU Xiaopo, XU Shuang, LI Xiaoxue, FENG Fuxiang, WANG Qingfa. Hollow Pt/ZSM-5 catalysts for highly selective hydrodeoxygenation of guaiacol to cycloalkanes[J]. CIESC Journal, 2021, 72(5): 2616-2625.
图4 不同中空ZSM-5分子筛的N2吸附和脱附等温曲线和BJH孔径分布
Fig.4 N2 adsorption and desorption isotherms and the corresponding BJH pore size distributions of different hollow ZSM-5 zeolites
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | ||||
---|---|---|---|---|---|---|
SBET | Smicro | Sext | Vtotal | Vmicro | Vext | |
HZ-100 | 383.51 | 192.89 | 190.61 | 0.2656 | 0.0937 | 0.1719 |
HZ-200 | 386.96 | 186.79 | 200.17 | 0.2585 | 0.0804 | 0.1781 |
HZ-300 | 385.46 | 204.82 | 180.64 | 0.2662 | 0.0964 | 0.1698 |
表1 不同中空ZSM-5分子筛的比表面积和孔结构性质
Table 1 Specific surface area and pore structure properties of different hollow ZSM-5 zeolites
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | ||||
---|---|---|---|---|---|---|
SBET | Smicro | Sext | Vtotal | Vmicro | Vext | |
HZ-100 | 383.51 | 192.89 | 190.61 | 0.2656 | 0.0937 | 0.1719 |
HZ-200 | 386.96 | 186.79 | 200.17 | 0.2585 | 0.0804 | 0.1781 |
HZ-300 | 385.46 | 204.82 | 180.64 | 0.2662 | 0.0964 | 0.1698 |
样品 | 峰温/℃ | 酸量/(μmol/g) | |||||
---|---|---|---|---|---|---|---|
Peak Ⅰ | Peak Ⅱ | Peak Ⅲ | Weak | Midium | Strong | Total | |
Pt/HZ-100 | 188 | 315 | 401 | 274.30 | 59.25 | 167.15 | 500.71 |
Pt/HZ-200 | 177 | 285 | 380 | 128.37 | 43.80 | 87.75 | 259.93 |
Pt/HZ-300 | 152 | 206 | 307 | 77.83 | 22.29 | 70.16 | 170.27 |
表2 不同中空分子筛负载Pt催化剂NH3-TPD定量数据
Table 2 Acidity properties of Pt/HZ-100, Pt/HZ-200 and Pt/HZ-300 catalysts
样品 | 峰温/℃ | 酸量/(μmol/g) | |||||
---|---|---|---|---|---|---|---|
Peak Ⅰ | Peak Ⅱ | Peak Ⅲ | Weak | Midium | Strong | Total | |
Pt/HZ-100 | 188 | 315 | 401 | 274.30 | 59.25 | 167.15 | 500.71 |
Pt/HZ-200 | 177 | 285 | 380 | 128.37 | 43.80 | 87.75 | 259.93 |
Pt/HZ-300 | 152 | 206 | 307 | 77.83 | 22.29 | 70.16 | 170.27 |
14 | Dabros T M H, Stummann M Z, Høj M, et al. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis[J]. Progress in Energy and Combustion Science, 2018, 68: 268-309. |
15 | Salakhum S, Saenluang K, Wattanakit C. Stability of monometallic Pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase[J]. Sustainable Energy & Fuels, 2020, 4(3): 1126-1134. |
16 | Wang Y X, Huang H J, Baxter N C, et al. Guaiacol hydrodeoxygenation over Pd catalyst with mesoporous ZSM-5 support synthesized by solid-state crystallization[J]. Catalysis Today, 2020, 358: 60-67. |
17 | Li W L, Li F, Wang H Y, et al. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane[J]. Molecular Catalysis, 2020, 480: 110642. |
18 | Ambursa M M, Voon L H, Ching J J, et al. Catalytic hydrodeoxygenation of dibenzofuran to fuel graded molecule over mesoporous supported bimetallic catalysts[J]. Fuel, 2019, 236: 236-243. |
19 | Fu T J, Qi R Y, Wang X, et al. Facile synthesis of nano-sized hollow ZSM-5 zeolites with rich mesopores in shell[J]. Microporous and Mesoporous Materials, 2017, 250: 43-46. |
20 | Ma L C, Ding C M, Wang J W, et al. Highly dispersed Pt nanoparticles confined within hierarchical pores of silicalite-1 zeolite via crystal transformation of supported Pt/S-1 catalyst for partial oxidation of methane to syngas[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21847-21857. |
21 | Wang Y X, Wu J H, Wang S N. Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: importance of mesopores and acidity of the support to compounds with different oxygen contents[J]. RSC Advances, 2013, 3(31): 12635-12640. |
22 | Zhang Y F, Lu P, Yuan Y Y, et al. One pot synthesis of hierarchically macro/microporous ZSM-5 single crystals[J]. CrystEngComm, 2017, 19(32): 4713-4719. |
23 | Pagis C, Bouchy C, Dodin M, et al. Hollow Y zeolite single crystals: synthesis, characterization and activity in the hydroisomerization of n-hexadecane[J]. Oil & Gas Science and Technology – Revue d'IFP Energies Nouvelles, 2019, 74: 38. |
24 | Liu B, Chen Z, Huang J, et al. Development of iron encapsulated hollow beta zeolites for ammonia selective catalytic reduction[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2914-2923. |
25 | Huang X, Jiao X, Lin M G, et al. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catalysis Science & Technology, 2018, 8(22): 5740-5749. |
26 | Wu X X, Wang Y Q, Zhang T, et al. Effect of TS-1 treatment by tetrapropyl ammonium hydroxide on cyclohexanone ammoximation[J]. Catalysis Communications, 2014, 50: 59-62. |
1 | Wang X C, Arai M, Wu Q F, et al. Hydrodeoxygenation of lignin-derived phenolics — a review on the active sites of supported metal catalysts[J]. Green Chemistry, 2020, 22(23): 8140-8168. |
2 | Sun Z H, Fridrich B, de Santi A, et al. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. |
3 | Ambursa M M, Juan J C, Yahaya Y, et al. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110667. |
27 | Wang Y R, Tuel A. Nanoporous zeolite single crystals: ZSM-5 nanoboxes with uniform intracrystalline hollow structures[J]. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 286-295. |
28 | Agger J R, Hanif N, Anderson M W. Fundamental zeolite crystal growth rates from simulation of atomic force micrographs[J]. Angewandte Chemie International Edition, 2001, 40(21): 4065-4067. |
29 | Li H S, He S C, Ma K, et al. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Applied Catalysis A: General, 2013, 450: 152-159. |
30 | Chen H, Zhang X W, Zhang J F, et al. Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel-like hydrocarbons[J]. RSC Advances, 2017, 7(73): 46109-46117. |
31 | Tao H X, Yang H, Liu X H, et al. Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures[J]. Chemical Engineering Journal, 2013, 225: 686-694. |
32 | Song G, Chen W, Dang P, et al. Synthesis of an excellent MTP catalyst: hierarchical ZSM-5 zeolites with great mesoporosity[J]. Royal Society Open Science, 2018, 5(12): 181691. |
33 | Feng F X, Wang L, Zhang X W, et al. Selective hydroconversion of oleic acid into aviation-fuel-range alkanes over ultrathin Ni/ZSM-5 nanosheets[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5432-5444. |
34 | Raddi de Araujo L R, Schmal M. The calcination effects on Pt/HZSM-5 catalysts in the aromatization of propane[J]. Applied Catalysis A: General, 2000, 203(2): 275-284. |
35 | Chen C Y, Zhu J, Chen F, et al. Enhanced performance in catalytic combustion of toluene over mesoporous beta zeolite-supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2013, 140/141: 199-205. |
36 | Yohe S L, Choudhari H J, Mehta D D, et al. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: product selectivity, reaction pathway, and structural characterization[J]. Journal of Catalysis, 2016, 344: 535-552. |
37 | Abu Bakar N H H, Bettahar M M, Abu Bakar M, et al. PtNi catalysts prepared via borohydride reduction for hydrogenation of benzene[J]. Journal of Catalysis, 2009, 265(1): 63-71. |
4 | Silva N K G, Ferreira R A R, Ribas R M, et al. Gas-phase hydrodeoxygenation (HDO) of guaiacol over Pt/Al2O3 catalyst promoted by Nb2O5[J]. Fuel, 2021, 287: 119509. |
5 | Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. |
6 | Wang C G, Zhang X H, Liu Q, et al. A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies[J]. Fuel Processing Technology, 2020, 208: 106485. |
7 | Yan P H, Mensah J, Drewery M, et al. Role of metal support during Ru-catalysed hydrodeoxygenation of biocrude oil[J]. Applied Catalysis B: Environmental, 2021, 281: 119470. |
8 | Song W J, Liu Y S, Baráth E, et al. Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. |
9 | Shu R Y, Lin B Q, Wang C, et al. Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/TiO2 catalyst[J]. Fuel, 2019, 239: 1083-1090. |
38 | Liu J, Zhang H, Lu N, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064. |
39 | Chen C, Chen F, Zhang L, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communications (Cambridge, England), 2015, 51(27): 5936-5938. |
40 | Wang J, Chen H Y, Li Q Z. Influence of the Brönsted and Lewis acid sites in platinum/solid acid catalysts on the hydrogenation of benzene and toluene[J]. Reaction Kinetics and Catalysis Letters, 2000, 69(2): 277-284. |
41 | Baloch H A, Nizamuddin S, Siddiqui M T H, et al. Recent advances in production and upgrading of bio-oil from biomass: a critical overview[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5101-5118. |
42 | Kay Lup A N, Abnisa F, Wan Daud W M A, et al. A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 1-34. |
43 | Li X P, Chen G Y, Liu C X, et al. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 296-308. |
10 | Lee C R, Yoon J S, Suh Y W, et al. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catalysis Communications, 2012, 17: 54-58. |
11 | Feliczak-Guzik A, Szczyglewska P, Nowak I. The effect of metal (Nb, Ru, Pd, Pt) supported on SBA-16 on the hydrodeoxygenation reaction of phenol[J]. Catalysis Today, 2019, 325: 61-67. |
12 | Prins R. Hydrogen spillover. Facts and fiction[J]. Chemical Reviews, 2012, 112(5): 2714-2738. |
13 | Im J, Shin H, Jang H, et al. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures[J]. Nature Communications, 2014, 5: 3370. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[12] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 805
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||