化工学报 ›› 2022, Vol. 73 ›› Issue (2): 914-922.DOI: 10.11949/0438-1157.20210907
罗紫藤1(),周秋成2,王雨露1,席引尚2,周安宁1,陈福欣1()
收稿日期:
2021-07-01
修回日期:
2021-10-15
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
陈福欣
作者简介:
罗紫藤(1995—),女,硕士研究生,基金资助:
Ziteng LUO1(),Qiucheng ZHOU2,Yulu WANG1,Yinshang XI2,Anning ZHOU1,Fuxin CHEN1()
Received:
2021-07-01
Revised:
2021-10-15
Online:
2022-02-05
Published:
2022-02-18
Contact:
Fuxin CHEN
摘要:
在500℃下对类煤模型化合物1-萘甲醇与同位素示踪剂的共热解进行了机理研究。利用Py-GC/MS进行快速产物检测,同时联合自由基捕获剂来推断自由基的反应过程。结果表明,在500℃和0.2 min的条件下,1-萘甲醇的热解产物相对单一,但是自由基反应的引发、交换和湮灭极其快速,现有检测方法是对某一时间节点的平衡反应结果的分析。通过D2O和H218O同位素示踪,成功捕获到了自由基交换后的D取代产物和18O取代产物。揭示了1-萘甲醇经过1-萘甲基自由基转化为1-萘甲醛的转化过程,发现萘环上的取代基在1-萘甲醇的热解过程中起着重要作用。同时对自由基及产物进行了定性和半定量分析,发现在加入自由基捕获剂后产物的丰度较之前降低了一个数量级,说明了自由基捕获剂抑制了产物的生成。
中图分类号:
罗紫藤, 周秋成, 王雨露, 席引尚, 周安宁, 陈福欣. 基于Py-GC/MS研究热解反应中自由基的捕获反应[J]. 化工学报, 2022, 73(2): 914-922.
Ziteng LUO, Qiucheng ZHOU, Yulu WANG, Yinshang XI, Anning ZHOU, Fuxin CHEN. Study on capture reaction of free radicals in pyrolysis reaction based on Py-GC/MS[J]. CIESC Journal, 2022, 73(2): 914-922.
仪器与设备 | 型号 | 生产厂家 |
---|---|---|
电子天平 | CPA225D | 赛多利斯科学仪器 (北京)有限公司 |
气相色谱-质谱联用仪 | 7890A/5975C型 | 美国Agilent公司 |
热裂解仪 | Py-2020is | 日本FRONTIER LAB |
表1 主要实验仪器与设备
Table 1 The main experimental instruments and equipments
仪器与设备 | 型号 | 生产厂家 |
---|---|---|
电子天平 | CPA225D | 赛多利斯科学仪器 (北京)有限公司 |
气相色谱-质谱联用仪 | 7890A/5975C型 | 美国Agilent公司 |
热裂解仪 | Py-2020is | 日本FRONTIER LAB |
模型化合物 | 加入量/mg | 同位素 示踪剂 | 加入量/μl | 自由基 捕获剂 | 加入量/mg |
---|---|---|---|---|---|
1-萘甲醇 | 0.01 | 水 | 2 | — | — |
2 | — | — | |||
2 | — | — | |||
水 | 2 | TCNQ | 0.01 | ||
2 | TCNQ | 0.01 | |||
2 | TCNQ | 0.01 |
表2 实验样品
Table 2 Experimental sample
模型化合物 | 加入量/mg | 同位素 示踪剂 | 加入量/μl | 自由基 捕获剂 | 加入量/mg |
---|---|---|---|---|---|
1-萘甲醇 | 0.01 | 水 | 2 | — | — |
2 | — | — | |||
2 | — | — | |||
水 | 2 | TCNQ | 0.01 | ||
2 | TCNQ | 0.01 | |||
2 | TCNQ | 0.01 |
5 | ||
6 |
表3 1-萘甲醇和H2O的主要热解产物
Table 3 The main pyrolysis product of 1-naphthyl methanol and H2O
5 | ||
6 |
1 | 刘俊杰, 武瑞瑞, 袁悦, 等. 煤热解工艺现状及发展趋势[J]. 化工技术与开发, 2020, 49(12): 23-27. |
Liu J J, Wu R R, Yuan Y, et al. Current status and development trend of coal pyrolysis process[J]. Technology & Development of Chemical Industry, 2020, 49(12): 23-27. | |
2 | 吴志强, 张博, 杨伯伦. 生物质化学链转化技术研究进展[J]. 化工学报, 2019, 70(8): 2835-2853. |
Wu Z Q, Zhang B, Yang B L. Research progress on biomass chemical-looping conversion technology[J]. CIESC Journal, 2019, 70(8): 2835-2853. | |
3 | Djandja O S, Wang Z C, Duan P G, et al. Hydrotreatment of pyrolysis oil from waste tire in tetralin for production of high-quality hydrocarbon rich fuel[J]. Fuel, 2021, 285: 119185. |
4 | 毕山松, 郭啸晋, 王波, 等. 重质有机资源热解过程中自由基诱导反应的密度泛函理论研究[J]. 燃料化学学报, 2021, 49(5):684-693. |
Bi S S, Guo X J, Wang B, et al. A DFT simulation on induction reactions involved radicals during pyrolysis of heavy organics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 684-693. | |
5 | 石剑, 李术元, 马跃. 爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J]. 燃料化学学报, 2018, 46(1): 1-7. |
Shi J, Li S Y, Ma Y. Electron paramagnetic resonance study of Estonia oil shale and its pyrolysis products[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 1-7. | |
6 | Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608. |
7 | Liu X C, Cui P, Ling Q, et al. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 504-512. |
8 | Wang W, Ma Y, Li S Y, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016, 30(2): 830-834. |
9 | 李刚. 煤热解中间体和自由基表征及反应机理研究[D]. 大连: 大连理工大学, 2015. |
Li G. Characterization of coal pyrolysis intermediates and free radicals and research on reaction mechanism[D]. Dalian: Dalian University of Technology, 2015. | |
10 | 孔令浩. 类煤结构模型化合物的热解研究[D]. 大连: 大连理工大学, 2015. |
Kong L H. Pyrolysis study of coal-based model compounds[D]. Dalian: Dalian University of Technology, 2015. | |
11 | Wang S Z, Fan X, Zheng A L, et al. Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds[J]. Fuel, 2014, 117: 556-563. |
12 | 成茂, 王胜春, 张德祥. 煤转化过程自由基研究进展[J]. 煤炭转化, 2012, 35(4): 94-98. |
Cheng M, Wang S C, Zhang D X. Research progress on free radicals in coal conversion process[J]. Coal Conversion, 2012, 35(4): 94-98. | |
13 | Morgan T J, Kandiyoti R. Pyrolysis of coals and biomass: analysis of thermal breakdown and its products[J]. Chemical Reviews, 2014, 114(3): 1547-1607. |
14 | 王政, 张兴华, 张逦嘉, 等. 大气颗粒物中环境持久性自由基的电子顺磁共振检测方法[J]. 环境化学, 2020, 39(2): 317-325. |
Wang Z, Zhang X H, Zhang L J, et al. Detection of environmentally persistent free radicals in atmospheric particulate matter by electron paramagnetic resonance[J]. Environmental Chemistry, 2020, 39(2): 317-325. | |
15 | 龙盛京, 石建庆, 谢云峰. 流动注射邻菲啰啉化学发光体系测定羟自由基[J]. 分析试验室, 2006, 25(7): 35-38. |
Long S J, Shi J Q, Xie Y F. Detection of hydroxym radicals by flow injection phenanthroline chemiluminescence system[J]. Chinese Journal of Analysis Laboratory, 2006, 25(7): 35-38. | |
16 | 王织云, 肖怀秋. 羟基自由基测定技术研究进展[J]. 广西轻工业, 2009, 25(6): 23-24. |
Wang Z Y, Xiao H Q. Research progress of determination technology of hydroxyl radical[J]. Guangxi Journal of Light Industry, 2009, 25(6): 23-24. | |
17 | Lin Y M, Lu G P, Wang R K, et al. Radical route to 1, 4-benzothiazine derivatives from 2-aminobenzenethiols and ketones under transition-metal-free conditions[J]. Organic Letters, 2016, 18(24): 6424-6427. |
18 | 仲晓星, 王德明, 徐永亮, 等. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(6): 960-963. |
Zhong X X, Wang D M, Xu Y L, et al. The variation characteristics of free radicals in coal oxidation[J]. Journal of China Coal Society, 2010, 35(6): 960-963. | |
19 | 韩瑶, 李佳隆, 杨亚磊, 等. 二甲基亚砜捕获-高效液相色谱法测定羟基自由基[J]. 分析科学学报, 2021, 37(2): 177-182. |
Han Y, Li J L, Yang Y L, et al. Determination of hydroxyl radicals by dimethyl sulfoxide trapping-high performance liquid chromatography[J]. Journal of Analytical Science, 2021, 37(2): 177-182. | |
20 | 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143. |
Wang J, Zhang Y L, Wang J F, et al. Synergistic inhibition effect of inorganic salt inhibitor and free radical scavenger on coal spontaneous combustion[J]. Journal of China Coal Society, 2020, 45(12): 4132-4143. | |
21 | 陈军超. TEMPO捕获过氧自由基的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Chen J C. Study on the mechanism of TEMPO capturing peroxy free radicals[D]. Harbin: Harbin Institute of Technology, 2018. | |
22 | Zhou Y, Li L, Jin L J, et al. Pyrolytic behavior of coal-related model compounds connected with C—C bridged linkages by in situ pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel, 2019, 241: 533-541. |
23 | Chen F X, Yan B B, Liu N, et al. Bimetallic oriented catalytic fast pyrolysis of lignin research based on Py-GC/MS[J]. Biomass Conversion and Biorefinery, 2020, 10(4): 1315-1325. |
24 | Li G S, Dong X M, Fan X, et al. Evaluation of coal-related model compounds using tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(16): 1462-1472. |
25 | Li W T, Wei X Y, Li X K, et al. Catalytic hydroconversion of lignite-related model compounds over difunctional Ni-Mg2Si/γ-Al2O3[J]. Fuel, 2017, 200: 208-217. |
26 | Yan J C, Jiao H R, Li Z K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods[J]. Fuel, 2019, 241: 382-391. |
27 | Li L, Fan H J, Hu H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153: 70-77. |
28 | Li G, Li L, Jin L J, et al. Methyl substitution effect in pyrolysis of coal-based model compound isomers[J]. Fuel Processing Technology, 2018, 178: 371-378. |
29 | Kong L H, Li G, Jin L J, et al. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Processing Technology, 2015, 129: 113-119. |
30 | Chen F X, Hou B B, Chen S Y, et al. Biochemicals distribution and the collaborative pyrolysis study from three main components of Helianthus annuus stems based on Py-GC/MS[J]. Renewable Energy, 2017, 114: 960-967. |
31 | Chen F X, Gong P, Zhang H K, et al. Biomass pyrolysis of Helianthus annuus stems: qualitative and quantitative study based on Py-GC/MS[J]. BioResources, 2016, 11(4): 8589-8614. |
32 | Wang L L, Pan T Y, Liu P, et al. Hydrogen transfer route during hydrothermal treatment of lignite using the isotope tracer method and improving the pyrolysis tar yield[J]. Energy & Fuels, 2016, 30(6): 4562-4569. |
33 | He T, Zhang Y M, Zhu Y N, et al. Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 2204-2208. |
34 | Jiang G B, Xu L, Cao F L, et al. Electron paramagnetic resonance(EPR)studies on free radical scavenging capacity of EGB and EGB cigarette[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1322-1328. |
35 | Rajib A, Saadeh S, Katawal P, et al. Enhancing biomass value chain by utilizing biochar as a free radical scavenger to delay ultraviolet aging of bituminous composites used in outdoor construction[J]. Resources, Conservation and Recycling, 2021, 168: 105302. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||