化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1615-1622.DOI: 10.11949/0438-1157.20211615
收稿日期:
2021-11-12
修回日期:
2022-01-14
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
陶少辉,项曙光
作者简介:
毕荣山(1974—),男,博士,副教授,基金资助:
Rongshan BI(),Zhihui HAN,Shaohui TAO(),Xiaoyan SUN,Shuguang XIANG()
Received:
2021-11-12
Revised:
2022-01-14
Online:
2022-04-05
Published:
2022-04-25
Contact:
Shaohui TAO,Shuguang XIANG
摘要:
在工业生产过程中,生产决策的调整或生产状况的变化会导致生产过程多模态化,常用的数据聚类方法进行工况识别时存在参数选取困难或需要先验知识等限制。基于此,提出一种将人工智能领域的热扩散核密度确定密度峰的技术与高斯混合模型相结合的方法,可有效克服目前方法的缺点。该方法首先利用热扩散核密度确定密度峰的技术估算每个数据点的密度及其与局部密度较大点的距离,获取数据集的聚类中心并完成聚类;其次,利用高斯混合模型获取不同工况的特征参数:平均值、协方差和先验概率,从而对多工况历史过程进行准确的描述;最后,利用文献中仿真数据和Tennessee Eastman过程两个案例进行验证,并与K-均值法和F-J改进的高斯混合模型进行比较,证明了本文提出方法可更加方便、有效地对历史工况进行准确识别。
中图分类号:
毕荣山, 韩智慧, 陶少辉, 孙晓岩, 项曙光. 基于热扩散核密度确定密度峰值法的历史工况识别[J]. 化工学报, 2022, 73(4): 1615-1622.
Rongshan BI, Zhihui HAN, Shaohui TAO, Xiaoyan SUN, Shuguang XIANG. Recognizing historical operating conditions by determining the density peaks at kernel density estimation of heat diffusion[J]. CIESC Journal, 2022, 73(4): 1615-1622.
项目 | 工况个数 | 每种工况的先验概率 | 每种工况下变量x1, x2, x3的平均值 | 相对偏差 |
---|---|---|---|---|
实际值 | 3 | 0.25 | 11.777,296.288,12.410 | — |
0.25 | 20.467,192.899,354.307 | — | ||
0.5 | 10.351,19.900,152.718 | — | ||
本文方法 | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 3) | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.136 | 21.4211,209.428,388.063 | 4.66,8.57,9.53 | ||
0.114 | 19.3326,173.233,314.144 | 5.54,10.2,11.34 | ||
0.5 | 10.3508,19.900,152.718 | 0,0,0 | ||
GMM(F-J)法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8427,152.52 | -2.84,-19.7,0.01 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 1.88,13.03,-0.05 | ||
GMM(F-J)法 (K = 5) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8426,152.52 | -3.03,-20.39,-0.13 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 2.08,14,0.09 |
表1 仿真多模态过程的工况识别结果
Table 1 Recognition results of simulation multiple operating modes
项目 | 工况个数 | 每种工况的先验概率 | 每种工况下变量x1, x2, x3的平均值 | 相对偏差 |
---|---|---|---|---|
实际值 | 3 | 0.25 | 11.777,296.288,12.410 | — |
0.25 | 20.467,192.899,354.307 | — | ||
0.5 | 10.351,19.900,152.718 | — | ||
本文方法 | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 3) | 3 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.5 | 10.351,19.900,152.718 | 0,0,0 | ||
K-均值法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.136 | 21.4211,209.428,388.063 | 4.66,8.57,9.53 | ||
0.114 | 19.3326,173.233,314.144 | 5.54,10.2,11.34 | ||
0.5 | 10.3508,19.900,152.718 | 0,0,0 | ||
GMM(F-J)法 (K = 4) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8427,152.52 | -2.84,-19.7,0.01 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 1.88,13.03,-0.05 | ||
GMM(F-J)法 (K = 5) | 4 | 0.25 | 11.777,296.288,12.410 | 0,0,0 |
0.203 | 10.0372,15.8426,152.52 | -3.03,-20.39,-0.13 | ||
0.25 | 20.467,192.899,354.307 | 0,0,0 | ||
0.297 | 10.5662,22.6857,152.853 | 2.08,14,0.09 |
项目 | 模态 | G/H比例 | 产品生产率 |
---|---|---|---|
第1组 | 1 | 50/50 | 7038 kg/h G和7038 kg/h H |
第2组 | 2 | 10/90 | 1048 kg/h G和12669 kg/h H |
第3组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
第4组 | 4 | 50/50 | 最大生产率 |
第5组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
表2 TE过程的模态选取情况
Table 2 Mode selection of the TE process
项目 | 模态 | G/H比例 | 产品生产率 |
---|---|---|---|
第1组 | 1 | 50/50 | 7038 kg/h G和7038 kg/h H |
第2组 | 2 | 10/90 | 1048 kg/h G和12669 kg/h H |
第3组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
第4组 | 4 | 50/50 | 最大生产率 |
第5组 | 3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
项目 | 实际值 | 本文方法 | K-均值法(K = 4) | K-均值法(K = 5) | K-均值法(K = 6) | GMM(F-J)法(K ≥ 4) |
---|---|---|---|---|---|---|
工况个数 | 4 | 4 | 4 | 5 | 6 | 无法得到参数 |
每种工况的先验概率 | 0.2 | 0.2 | 0.2 | 0.2 | 0.06 | 无法得到参数 |
0.2 | 0.2 | 0.2 | 0.2 | 0.08 | ||
0.4 | 0.4 | 0.4 | 0.106 | 0.06 | ||
0.2 | 0.2 | 0.2 | 0.094 | 0.2 | ||
0.4 | 0.4 | |||||
0.2 |
表3 TE多模态过程的工况个数及先验概率的识别结果
Table 3 Recognition results of the number and probability of the TE multi-modal process
项目 | 实际值 | 本文方法 | K-均值法(K = 4) | K-均值法(K = 5) | K-均值法(K = 6) | GMM(F-J)法(K ≥ 4) |
---|---|---|---|---|---|---|
工况个数 | 4 | 4 | 4 | 5 | 6 | 无法得到参数 |
每种工况的先验概率 | 0.2 | 0.2 | 0.2 | 0.2 | 0.06 | 无法得到参数 |
0.2 | 0.2 | 0.2 | 0.2 | 0.08 | ||
0.4 | 0.4 | 0.4 | 0.106 | 0.06 | ||
0.2 | 0.2 | 0.2 | 0.094 | 0.2 | ||
0.4 | 0.4 | |||||
0.2 |
变量 | 本文方法 | K-均值法(K = 4) | ||||
---|---|---|---|---|---|---|
平均相对偏差 | 最大相对偏差 | 最小相对偏差 | 平均相对偏差 | 最大相对偏差 | 最小相对偏差 | |
D物料流量 | -0.081 | -0.4104 | -0.0225 | -0.0814 | -0.412 | -0.0225 |
回收流量 | 0.0912 | 0.2786 | 0.0062 | 0.0909 | 0.2778 | 0.0062 |
放空率 | -1.3681 | -4.748 | -0.9476 | -1.4371 | -4.9847 | -0.9567 |
反应器进料量 | 0.0645 | 0.1505 | 0.0357 | 0.0644 | 0.1503 | 0.0357 |
产品分离器压力 | -0.0043 | -0.0148 | -0.0014 | -0.0043 | -0.0148 | -0.0014 |
汽提塔温度 | 0.0189 | 0.2343 | 0.0613 | 0.0186 | 0.2337 | 0.0613 |
压缩机工作功率 | 0.1075 | 0.3217 | 0.0441 | 0.1071 | 0.3207 | 0.0441 |
反应器组分B流量 | -0.1046 | -0.4776 | -0.1074 | -0.1054 | -0.4799 | -0.1075 |
放空气体中G组分流量 | -0.0142 | -0.9356 | 0.1306 | -0.0173 | -0.9444 | 0.1305 |
产品中组分H流量 | -0.0424 | 0.4618 | 0.1825 | -0.0438 | 0.4597 | 0.1821 |
表4 TE多模态过程变量的识别结果
Table 4 Recognition results of TE multi-modal process variables
变量 | 本文方法 | K-均值法(K = 4) | ||||
---|---|---|---|---|---|---|
平均相对偏差 | 最大相对偏差 | 最小相对偏差 | 平均相对偏差 | 最大相对偏差 | 最小相对偏差 | |
D物料流量 | -0.081 | -0.4104 | -0.0225 | -0.0814 | -0.412 | -0.0225 |
回收流量 | 0.0912 | 0.2786 | 0.0062 | 0.0909 | 0.2778 | 0.0062 |
放空率 | -1.3681 | -4.748 | -0.9476 | -1.4371 | -4.9847 | -0.9567 |
反应器进料量 | 0.0645 | 0.1505 | 0.0357 | 0.0644 | 0.1503 | 0.0357 |
产品分离器压力 | -0.0043 | -0.0148 | -0.0014 | -0.0043 | -0.0148 | -0.0014 |
汽提塔温度 | 0.0189 | 0.2343 | 0.0613 | 0.0186 | 0.2337 | 0.0613 |
压缩机工作功率 | 0.1075 | 0.3217 | 0.0441 | 0.1071 | 0.3207 | 0.0441 |
反应器组分B流量 | -0.1046 | -0.4776 | -0.1074 | -0.1054 | -0.4799 | -0.1075 |
放空气体中G组分流量 | -0.0142 | -0.9356 | 0.1306 | -0.0173 | -0.9444 | 0.1305 |
产品中组分H流量 | -0.0424 | 0.4618 | 0.1825 | -0.0438 | 0.4597 | 0.1821 |
1 | 谭帅. 多模态过程统计建模及在线监测方法研究[D]. 沈阳: 东北大学, 2012. |
Tan S. Statistical modeling and online monitoring for multiple mode processes[D]. Shenyang: Northeastern University, 2012. | |
2 | 陈刚, 路殿坤. 黄金冶金原理与工艺[M]. 沈阳: 东北大学出版社, 1999. |
Chen G, Lu D K. Gold Metallurgy Principle and Technology [M]. Shenyang: Northeast University Press, 1999. | |
3 | Jia R X, Wang J, Zhou J L. Fault diagnosis of industrial process based on the optimal parametric t-distributed stochastic neighbor embedding[J]. Science China Information Sciences, 2020, 64(5): 1-3. |
4 | Le Q H, Verheijen P J T, Mampaey K E, et al. Non-linear data reconciliation for a partial nitritation (SHARON) reactor[J]. IFAC-PapersOnLine, 2016, 49(7): 1139-1144. |
5 | 李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336. |
Li Y M, Shi X D, Xiong W L. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336. | |
6 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
7 | Zhao S J, Zhang J, Xu Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7): 763-772. |
8 | Cao Y, Jan N M, Huang B, et al. Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 210: 104230. |
9 | Zhang Z, Deng X G. Anomaly detection using improved deep SVDD model with data structure preservation[J]. Pattern Recognition Letters, 2021, 148: 1-6. |
10 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
11 | Tan S, Wang F L, Peng J, et al. Multimode process monitoring based on mode identification[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 374-388. |
12 | Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1174-1179. |
13 | 郭金玉, 袁堂明, 李元. 一种不等长的多模态间歇过程故障检测方法[J]. 化工学报, 2016, 67(7): 2916-2924. |
Guo J Y, Yuan T M, Li Y. Fault detection method for uneven-length multimode batch processes[J]. CIESC Journal, 2016, 67(7): 2916-2924. | |
14 | Zhu J L, Ge Z Q, Song Z H. Distributed Gaussian mixture model for monitoring plant-wide processes with multiple operating modes[J]. IFAC Journal of Systems and Control, 2018, 6: 1-15. |
15 | Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engineering, 2004, 28(8): 1377-1387. |
16 | Dong J, Zhang C, Peng K X. A new multimode process monitoring method based on a hierarchical Dirichlet process—Hidden semi-Markov model with application to the hot steel strip mill process[J]. Control Engineering Practice, 2021, 110: 104767. |
17 | Zhang J X, Zhou D H, Chen M Y. Monitoring multimode processes: a modified PCA algorithm with continual learning ability[J]. Journal of Process Control, 2021, 103: 76-86. |
18 | Khediri I B, Weihs C, Limam M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes[J]. Expert Systems with Applications, 2012, 39(2): 2166-2171. |
19 | Huang T, Peng H, Zhang K. Model selection for Gaussian mixture models[J]. Statistica Sinica, 2017, 27(1): 147-169. |
20 | Karlis D, Xekalaki E. Choosing initial values for the EM algorithm for finite mixtures[J]. Computational Statistics & Data Analysis, 2003, 41(3/4): 577-590. |
21 | Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396. |
22 | Paalanen P, Kamarainen J K, Ilonen J, et al. Feature representation and discrimination based on Gaussian mixture model probability densities—practices and algorithms[J]. Pattern Recognition, 2006, 39(7): 1346-1358. |
23 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
24 | Mehmood R, Zhang G Z, Bie R F, et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing, 2016, 208: 210-217. |
25 | Xiao J, Xu Q Q, Wu C L, et al. Performance evaluation of missing-value imputation clustering based on a multivariate Gaussian mixture model[J]. PLoS One, 2016, 11(8): e0161112. |
26 | Ma S, Sun S G, Wang B J, et al. Estimating load spectra probability distributions of train bogie frames by the diffusion-based kernel density method[J]. International Journal of Fatigue, 2020, 132: 105352. |
27 | Ge Z Q, Song Z H. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2009: 23(12):636-650. |
28 | 解翔, 侍洪波. 多模态化工过程的全局监控策略[J]. 化工学报, 2012, 63(7): 2156-2162. |
Xie X, Shi H B. Global monitoring strategy for multimode chemical processes[J]. CIESC Journal, 2012, 63(7): 2156-2162. | |
29 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
30 | Ricker N L. Optimal steady-state operation of the Tennessee Eastman challenge process[J]. Computers & Chemical Engineering, 1995, 19(9): 949-959. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[12] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[13] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[14] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[15] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||