化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4207-4216.DOI: 10.11949/0438-1157.20220790
收稿日期:
2022-06-05
修回日期:
2022-06-25
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
纪文涛
作者简介:
王燕(1982—),女,博士,教授,yanwang@hpu.edu.cn
基金资助:
Yan WANG(), Jia HE, Jingjing YANG, Chendi LIN, Wentao JI()
Received:
2022-06-05
Revised:
2022-06-25
Online:
2022-09-05
Published:
2022-10-09
Contact:
Wentao JI
摘要:
为研究草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性,选取NaHCO3、KHCO3、Na2C2O4和K2C2O4四种粉体,从火焰结构和火焰传播速度两方面分析其对聚乙烯粉尘爆炸的抑制性能,并结合抑爆粉体的理化性质分析抑爆机理。结果表明,四种抑爆粉体均可抑制聚乙烯粉尘爆炸火焰传播,且抑制效果随抑爆粉体浓度增加而增强。相同条件下,抑爆性能KHCO3>NaHCO3>K2C2O4>Na2C2O4,即钾盐粉体抑爆性能优于具有相同酸根离子的钠盐,碳酸氢盐粉体抑爆性能优于具有相同金属离子的草酸盐。另外,结合抑爆粉体热解特性测试及爆炸产物分析,探究了四种抑爆粉体的抑爆机理及离子构成带来的抑爆性能差异性原因。
中图分类号:
王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216.
Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate[J]. CIESC Journal, 2022, 73(9): 4207-4216.
图6 四种不同浓度抑爆粉体作用下0.20 g/L聚乙烯粉尘爆炸火焰结构
Fig.6 Flame structure of 0.20 g/L polyethylene dust explosion under the action of four explosion suppression powders with different concentrations
抑爆粉体 | 火焰锋面到达管道顶端时间/ms | |||
---|---|---|---|---|
20% | 40% | 60% | 80% | |
NaHCO3 | 40.0 | 50.5 | 54.5 | 82.0 |
KHCO3 | 45.0 | 51.0 | 85.0 | 151.0 |
Na2C2O4 | 34.5 | 36.0 | 44.0 | 59.0 |
K2C2O4 | 36.0 | 37.0 | 48.0 | 78.0 |
表1 四种不同浓度抑爆粉体作用下0.20 g/L聚乙烯粉尘爆炸火焰锋面到达管道顶端时间
Table 1 Time of 0.20 g/L polyethylene dust explosion flame front reaching the top of the pipe under the action of four explosion suppression powders with different concentrations
抑爆粉体 | 火焰锋面到达管道顶端时间/ms | |||
---|---|---|---|---|
20% | 40% | 60% | 80% | |
NaHCO3 | 40.0 | 50.5 | 54.5 | 82.0 |
KHCO3 | 45.0 | 51.0 | 85.0 | 151.0 |
Na2C2O4 | 34.5 | 36.0 | 44.0 | 59.0 |
K2C2O4 | 36.0 | 37.0 | 48.0 | 78.0 |
图7 四种抑爆粉体作用下0.20 g/L聚乙烯粉尘爆炸火焰锋面位置随时间变化规律
Fig.7 Variation of flame front position of 0.20 g/L polyethylene dust explosion with time under the action of four explosion suppression powders
图8 四种抑爆粉体作用下0.20 g/L聚乙烯粉尘爆炸火焰平均传播速度变化规律
Fig.8 Variation of average propagation velocity of 0.20 g/L polyethylene dust explosion flame under the action of four explosion suppression powders
1 | Abbasi M R, Shamiri A, Hussain M A. Dynamic modeling and molecular weight distribution of ethylene copolymerization in an industrial gas-phase fluidized-bed reactor[J]. Advanced Powder Technology, 2016, 27(4): 1526-1538. |
2 | Han O S, Lee J S. Pyrolysis characteristic and ignition energy of high-density polyethylene powder[J]. Journal of the Korean Institute of Gas, 2014, 18(3): 31-37. |
3 | Yan X Q, Yu J L. Dust explosion incidents in China[J]. Process Safety Progress, 2012, 31(2): 187-189. |
4 | Addo A, Dastidar A G, Taveau J R, et al. Niacin, lycopodium and polyethylene powder explosibility in 20 L and 1 m3 test Chambers[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103937. |
5 | 戚易斌. 韩国丽水产业园区化工厂发生爆炸致6死11伤[J]. 化工安全与环境, 2013(11): 15. |
Qi Y B. Explosion at chemical plant in Lishui Industrial Park, South Korea, resulting in 6 deaths and 11 injuries[J]. Chemical Safety and Environment, 2013(11): 15. | |
6 | Yang K, Cao J J, Zhao Y, et al. Inerting effect of N2 on explosion of LDPE dust/ethylene hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104431. |
7 | Li M H, Xu J C, Wang C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment[J]. Fuel, 2019, 255: 115747. |
8 | 王燕, 林森, 李忠, 等. 惰性气体对KHCO3冷气溶胶甲烷抑爆性能的影响研究[J]. 煤炭科学技术, 2021, 49(2): 145-152. |
Wang Y, Lin S, Li Z, et al. Research on synergistic effect of inert gas on methane explosion suppression performance of KHCO3 cold aerosol[J]. Coal Science and Technology, 2021, 49(2): 145-152. | |
9 | Liu R Z, Jia B S, Wang W. Numerical simulation of gas explosion suppression by ultrasonic water mist based on the cloud, fog, and edge computing[J]. Environmental Technology & Innovation, 2021, 21: 101369. |
10 | Song Y F, Zhang Q. Quantitative research on gas explosion inhibition by water mist[J]. Journal of Hazardous Materials, 2019, 363: 16-25. |
11 | Cao X Y, Wang Z R, Lu Y W, et al. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space[J]. Tunnelling and Underground Space Technology, 2021, 109: 103777. |
12 | 纪虹, 杨克, 黄维秋, 等. 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究[J]. 化工学报, 2017, 68(11): 4461-4468. |
Ji H, Yang K, Huang W Q, et al. Methane degradation and explosion inhibition by using ultrafine water mist containing methane oxidative bacteria-inorganic salt[J]. CIESC Journal, 2017, 68(11): 4461-4468. | |
13 | Jiang H P, Bi M S, Peng Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046-2055. |
14 | Liu J Q, Meng X B, Yan K, et al. Study on the effect and mechanism of Ca(H2PO4)2 and CaCO3 powders on inhibiting the explosion of titanium powder[J]. Powder Technology, 2022, 395: 158-167. |
15 | 纪文涛, 李璐, 李忠, 等. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
Ji W T, Li L, Li Z, et al. Study on suppression of PMMA dust explosion by ammonium polyphosphate[J]. CIESC Journal, 2022,73(1): 461-469. | |
16 | Wang Z, Meng X B, Yan K, et al. Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2 [J]. Powder Technology, 2021, 384: 284-296. |
17 | Zhang P P, Zhou Y H, Cao X Y, et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog[J]. Safety Science, 2014, 62: 1-7. |
18 | Jiang B Y, Liu Z G, Tang M Y, et al. Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semi-confined duct[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 141-149. |
19 | Jiang H P, Bi M S, Li B, et al. Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4 [J]. Combustion and Flame, 2019, 200: 97-114. |
20 | Chen X F, Zhang H M, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 905-911. |
21 | Zheng L G, Wang Y L, Yu S J, et al. The premixed methane/air explosion inhibited by sodium bicarbonate with different particle size distributions[J]. Powder Technology, 2019, 354: 630-640. |
22 | 杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性[J]. 化工学报, 2018, 69(12): 5359-5369. |
Yang K, Ji H, Xing Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate[J]. CIESC Journal, 2018, 69(12): 5359-5369. | |
23 | 王燕, 林晨迪, 郑立刚, 等. 草酸盐粉体抑制甲烷爆炸的试验研究[J]. 安全与环境学报, 2020, 20(4): 1327-1333. |
Wang Y, Lin C D, Zheng L G, et al. Experimental investigation into the inhibitive effect of the methane explosion via the oxalate powders[J]. Journal of Safety and Environment, 2020, 20(4): 1327-1333. | |
24 | 刘皓, 商靠定. K2C2O2溶液抑制甲烷-空气扩散火焰试验研究[J]. 中国安全科学学报, 2016, 26(8): 46-51. |
Liu H, Shang K D. Experimental research on suppression of methane-air diffusion flame by water mist with potassium oxalate[J]. China Safety Science Journal, 2016, 26(8): 46-51. | |
25 | 杨冬雷, 倪小敏, 况凯骞, 等. 复合干粉灭火剂抑制食用油火的试验研究[J]. 中国安全科学学报, 2011, 21(3): 65-70. |
Yang D L, Ni X M, Kuang K Q, et al. Experimental study on the performance of composite dry powders in suppressing cooking oil fires[J]. China Safety Science Journal, 2011, 21(3): 65-70. | |
26 | Amyotte P R, Pegg M J, Khan F I, et al. Moderation of dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 675-687. |
27 | Traoré M, Dufaud O, Perrin L, et al. Dust explosions: how should the influence of humidity be taken into account?[J]. Process Safety and Environmental Protection, 2009, 87(1): 14-20. |
28 | Wang Y, Lin C D, Qi Y Q, et al. Suppression of polyethylene dust explosion by sodium bicarbonate[J]. Powder Technology, 2020, 367: 206-212. |
29 | Lin S, Liu Z T, Qian J F, et al. Inertant effects and mechanism of Al(OH)3 powder on polyethylene dust explosions based on flame propagation behavior and thermal analysis[J]. Fire Safety Journal, 2021, 124: 103392. |
30 | 喻健良, 侯玉洁, 闫兴清, 等. 密闭空间内聚乙烯粉尘爆炸火焰传播特性的实验研究[J]. 化工学报, 2019, 70(3): 1227-1235. |
Yu J L, Hou Y J, Yan X Q, et al. Experimental study on flame propagation characteristic of polyethylene dust explosion under confined chamber[J]. CIESC Journal, 2019, 70(3): 1227-1235. | |
31 | 喻健良, 纪文涛, 孙会利, 等. 乙烯/聚乙烯两相体系爆炸特性[J]. 化工学报, 2017, 68(12): 4841-4847. |
Yu J L, Ji W T, Sun H L, et al. Explosibility of hybrid mixtures of ethylene and polyethylene dust[J]. CIESC Journal, 2017, 68(12): 4841-4847. | |
32 | 王菲, 李晓泉, 梁乐乐, 等. 氯化钠对蔗糖粉尘最小点火能的影响研究[J]. 广西大学学报(自然科学版), 2021, 46(2): 491-497. |
Wang F, Li X Q, Liang L L, et al. Study on the effects ofnacl on minimum ignition energy of sucrose dust[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(2): 491-497. | |
33 | 谭迎新, 王志杰, 高云, 等. 固体惰性介质对煤粉爆炸压力的影响研究[J]. 中国安全科学学报, 2007, 17(12): 76-79, 196. |
Tan Y X, Wang Z J, Gao Y, et al. Study on the effect of solid inert mediums on the pressure of coal dust explosion[J]. China Safety Science Journal (CSSJ),2007, 17(12): 76-79, 196. | |
34 | Cao X Y, Bi M S, Ren J J, et al. Experimental research on explosion suppression affected by ultrafine water mist containing different additives[J]. Journal of Hazardous Materials, 2019, 368: 613-620. |
[1] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[2] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[3] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[4] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[7] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[8] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[9] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[10] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[11] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[12] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[13] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[14] | 周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971. |
[15] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||