化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2075-2087.DOI: 10.11949/0438-1157.20230345
刘尚豪1(), 贾胜坤1,2(), 罗祎青1,2, 袁希钢1,2,3()
收稿日期:
2023-04-06
修回日期:
2023-05-05
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
贾胜坤,袁希钢
作者简介:
刘尚豪(1998—),男,硕士研究生,liushanghao_2020@tju.edu.cn
基金资助:
Shanghao LIU1(), Shengkun JIA1,2(), Yiqing LUO1,2, Xigang YUAN1,2,3()
Received:
2023-04-06
Revised:
2023-05-05
Online:
2023-05-05
Published:
2023-06-29
Contact:
Shengkun JIA, Xigang YUAN
摘要:
针对三组元精馏流程结构最优选择问题,提出一种基于梯度提升决策树(gradient boosting decision tree,GBDT)的机器学习方法,利用7种精馏流程结构分离9种三组元混合物的经济评价结果数据用于模型训练。分别应用传统决策树和GBDT模型对多个实际案例进行验证,结果显示无论是对已知物系还是未知物系,提出的GBDT模型相较传统决策树模型具有更高的预测准确率。
中图分类号:
刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree[J]. CIESC Journal, 2023, 74(5): 2075-2087.
编号 | 物系(A/B/C) | ESI | meanTb/K | ΔH/(kJ/mol) | |||
---|---|---|---|---|---|---|---|
A | 异戊烷/正戊烷/正己烷(i-C5/C5/C6) | 0.4306 | 1.2992 | 3.0174 | 3.9203 | 317.3647 | 79.2729 |
B | 正戊烷/正己烷/正辛烷(C5/C6/C8) | 0.4159 | 2.6132 | 6.2832 | 16.4194 | 349.9767 | 89.1309 |
C | 苯/甲苯/临二甲苯(B/T/oX) | 0.8799 | 2.3406 | 2.6601 | 6.2262 | 384.8667 | 100.5916 |
D | 乙醇/丙醇/丁醇(C2OH/C3OH/C4OH) | 0.9210 | 2.0076 | 2.1798 | 4.3762 | 371.2300 | 123.7694 |
E | 正己烷/正庚烷/正辛烷(C6/C7/C8) | 1.0157 | 2.3264 | 2.2906 | 5.3288 | 370.7633 | 95.1157 |
F | 正戊烷/正己烷/正庚烷(C5/C6/C7) | 1.0251 | 2.7074 | 2.6412 | 7.1510 | 340.8933 | 86.2980 |
G | 苯/甲苯/乙苯(B/T/EB) | 1.1238 | 2.3604 | 2.1004 | 4.9578 | 382.1233 | 99.6300 |
H | 甲苯/乙苯/临二甲苯(T/EB/oX) | 1.5840 | 1.9853 | 1.2533 | 2.4882 | 403.5700 | 105.4700 |
I | 正戊烷/正庚烷/正辛烷(C5/C7/C8) | 2.5696 | 6.1263 | 2.3841 | 14.6059 | 359.8767 | 92.0696 |
表1 三组元物系和相关参数
Table 1 Ternary mixtures and related parameters
编号 | 物系(A/B/C) | ESI | meanTb/K | ΔH/(kJ/mol) | |||
---|---|---|---|---|---|---|---|
A | 异戊烷/正戊烷/正己烷(i-C5/C5/C6) | 0.4306 | 1.2992 | 3.0174 | 3.9203 | 317.3647 | 79.2729 |
B | 正戊烷/正己烷/正辛烷(C5/C6/C8) | 0.4159 | 2.6132 | 6.2832 | 16.4194 | 349.9767 | 89.1309 |
C | 苯/甲苯/临二甲苯(B/T/oX) | 0.8799 | 2.3406 | 2.6601 | 6.2262 | 384.8667 | 100.5916 |
D | 乙醇/丙醇/丁醇(C2OH/C3OH/C4OH) | 0.9210 | 2.0076 | 2.1798 | 4.3762 | 371.2300 | 123.7694 |
E | 正己烷/正庚烷/正辛烷(C6/C7/C8) | 1.0157 | 2.3264 | 2.2906 | 5.3288 | 370.7633 | 95.1157 |
F | 正戊烷/正己烷/正庚烷(C5/C6/C7) | 1.0251 | 2.7074 | 2.6412 | 7.1510 | 340.8933 | 86.2980 |
G | 苯/甲苯/乙苯(B/T/EB) | 1.1238 | 2.3604 | 2.1004 | 4.9578 | 382.1233 | 99.6300 |
H | 甲苯/乙苯/临二甲苯(T/EB/oX) | 1.5840 | 1.9853 | 1.2533 | 2.4882 | 403.5700 | 105.4700 |
I | 正戊烷/正庚烷/正辛烷(C5/C7/C8) | 2.5696 | 6.1263 | 2.3841 | 14.6059 | 359.8767 | 92.0696 |
序号 | φA | φB | φC |
---|---|---|---|
1 | 0.95 | 0.95 | 0.95 |
2 | 0.95 | 0.99 | 0.99 |
3 | 0.99 | 0.95 | 0.99 |
4 | 0.99 | 0.99 | 0.95 |
5 | 0.999 | 0.95 | 0.999 |
6 | 0.999 | 0.99 | 0.95 |
7 | 0.999 | 0.999 | 0.99 |
8 | 0.99 | 0.99 | 0.99 |
9 | 0.999 | 0.999 | 0.999 |
表2 三组元分离产品纯度要求
Table 2 Product purity for the ternary separations
序号 | φA | φB | φC |
---|---|---|---|
1 | 0.95 | 0.95 | 0.95 |
2 | 0.95 | 0.99 | 0.99 |
3 | 0.99 | 0.95 | 0.99 |
4 | 0.99 | 0.99 | 0.95 |
5 | 0.999 | 0.95 | 0.999 |
6 | 0.999 | 0.99 | 0.95 |
7 | 0.999 | 0.999 | 0.99 |
8 | 0.99 | 0.99 | 0.99 |
9 | 0.999 | 0.999 | 0.999 |
物系(A/B/C) | ESI | ||
---|---|---|---|
i-C4/C4/i-C5 | 0.5173 | 1.506 | 2.911 |
i-C6/C6/C7 | 0.5069 | 1.209 | 2.545 |
i-C5/C5/C6 | 0.4306 | 1.2992 | 3.0174 |
C5/C6/C8 | 0.4159 | 2.6132 | 6.2832 |
表3 三组元物系和相关参数
Table 3 Ternary mixtures and related parameters
物系(A/B/C) | ESI | ||
---|---|---|---|
i-C4/C4/i-C5 | 0.5173 | 1.506 | 2.911 |
i-C6/C6/C7 | 0.5069 | 1.209 | 2.545 |
i-C5/C5/C6 | 0.4306 | 1.2992 | 3.0174 |
C5/C6/C8 | 0.4159 | 2.6132 | 6.2832 |
1 | 余国琮, 袁希钢. 我国蒸馏技术的现状与发展[J]. 现代化工, 1996, 16(10): 7-13. |
Yu G C, Yuan X G. The present status and development of distillation technology in China[J]. Modern Chemical Industry, 1996, 16(10): 7-13. | |
2 | Tsirlin A M, Balunov A I, Sukin I A. Estimates of energy consumption and selection of optimal distillation sequence for multicomponent distillation[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(3): 250-259. |
3 | Caballero J A. Thermally coupled distillation[J]. Computer Aided Chemical Engineering, 2009, 27: 59-64. |
4 | Petlyuk F B, Platonov V M, Slavinskii D M. Thermodynamically optimal method for separating multi component mixtures[J]. International Chimerical Engineering, 1965, 5(3): 555-561. |
5 | Glinos K, Malone M F. Minimum reflux, product distribution, and lumping rules for multicomponent distillation[J]. Industrial & Engineering Chemistry Process Design and Development, 1984, 23(4): 764-768. |
6 | Glinos K, Malone M F. Minimum vapor flows in a distillation column with a sidestream stripper[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(4): 1087-1090. |
7 | Glinos K N, Nikolaides I P, Malone M F. New complex column arrangements for ideal distillation[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(3): 694-699. |
8 | 朱怀工, 王燕, 张敏卿. 进料性质对立式隔板塔操作特性的影响[J]. 化工进展, 2009, 28(4): 579-583. |
Zhu H G, Wang Y, Zhang M Q. Influence of feed property on the operation of dividing wall column[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 579-583. | |
9 | Pleşu V, Bonet Ruiz A E, Bonet J, et al. Shortcut assessment of alternative distillation sequence schemes for process intensification[J]. Computers & Chemical Engineering, 2015, 83: 58-71. |
10 | Takase H, Hasebe S. Synthesis of ternary distillation process structures featuring minimum utility cost using the IDEAS approach[J]. AIChE Journal, 2018, 64(4): 1285-1294. |
11 | Tedder D W, Rudd D F. Parametric studies in industrial distillation (Ⅰ): Design comparisons[J]. AIChE Journal, 1978, 24(2): 303-315. |
12 | Agrawal R, Fidkowski Z T. Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations[J]. Industrial & Engineering Chemistry Research, 1998, 37(8): 3444-3454. |
13 | 吕向红, 陆恩锡. 热耦蒸馏及其选用原则[J]. 化学工程, 2005, 33(2): 9-12, 29. |
Lü X H, Lu E X. Thermally coupled distillation and its selection principles[J]. Chemical Engineering (China), 2005, 33(2): 9-12, 29. | |
14 | 袁野. 分离三组分物系精馏方式的模拟和优化选择[D]. 天津: 天津大学, 2015. |
Yuan Y. Simulation and optimization of distillation mode for separation of three components[D]. Tianjin: Tianjin University, 2015. | |
15 | 田芳, 袁野, 袁希钢, 等. 物系和分离要求对最优三组元精馏结构选择的影响[J]. 化工学报, 2017, 68(2): 708-715. |
Tian F, Yuan Y, Yuan X G, et al. Influence of mixture and separation requirements on optimal configuration for ternary distillation[J]. CIESC Journal, 2017, 68(2): 708-715. | |
16 | 王磊. 三组元最优精馏结构筛选的通用分离因子与定量化规则[D]. 天津: 天津大学, 2019. |
Wang L. General separation factors and quantitative rules for screening the optimal distillation structure of three components[D]. Tianjin: Tianjin University, 2019. | |
17 | 陈熙理, 孙国铭, 贾胜坤, 等. 基于决策树的三组元精馏序列结构最优合成规则识别[J]. 化工学报, 2021, 72(3): 1430-1437. |
Chen X L, Sun G M, Jia S K, et al. Identification of rules for optimal synthesis of ternary-distillation configuration based on decision tree[J]. CIESC Journal, 2021, 72(3): 1430-1437. | |
18 | Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106. |
19 | De’Ath G, Fabricius K E. Classification and regression trees: a powerful yet simple technique for ecological data analysis[J]. Ecology, 2000, 81(11): 3178-3192. |
20 | Kotsiantis S B. Decision trees: a recent overview[J]. Artificial Intelligence Review, 2013, 39(4): 261-283. |
21 | Wankat P C. Multieffect distillation processes[J]. Industrial & Engineering Chemistry Research, 1993, 32(5): 894-905. |
22 | Jiang Z Y, Mathew T J, Zhang H B, et al. Global optimization of multicomponent distillation configurations: global minimization of total cost for multicomponent mixture separations[J]. Computers & Chemical Engineering, 2019, 126: 249-262. |
23 | Ma Y J, Luo Y Q, Yuan X G. Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6266-6274. |
24 | Ma Y J, Luo Y Q, Zhang S, et al. Simultaneous optimization of complex distillation systems and heat integration using pseudo-transient continuation models[J]. Computers & Chemical Engineering, 2018, 108: 337-348. |
25 | Ma Y J, Luo Y Q, Ma X, et al. Fast algorithms for equation-oriented flowsheet simulation and optimization using pseudo-transient models[J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14124-14142. |
26 | Engelien H K, Skogestad S. Multi-effect distillation applied to an industrial case study[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(8): 819-826. |
27 | Carlberg N A, Westerberg A W. Temperature-heat diagrams for complex columns (3): Underwood's method for the Petlyuk configuration[J]. Industrial & Engineering Chemistry Research, 1989, 28(9): 1386-1397. |
28 | Friedman J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. |
29 | Kearns M, Valiant L G. Learning Boolean formulas[J]. Journal of the Association for Computing Machinery, 1994, 41(6): 1298-1328 |
30 | Zhang M L, Zhou Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. |
31 | Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2): 337-407. |
32 | Stone M. Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1976, 38(1): 102. |
33 | Stone M. An asymptotic equivalence of choice of model by cross-validation and akaike's criterion[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 44-47. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[8] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[9] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[10] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[11] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[12] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[13] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[14] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
[15] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||