1 |
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323.
|
2 |
Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
|
3 |
Jones E, Qadir M, van Vliet M T H, et al. The state of desalination and brine production: a global outlook[J]. Science of the Total Environment, 2019, 657: 1343-1356.
|
4 |
Subramani A, Jacangelo J G. Emerging desalination technologies for water treatment: a critical review[J]. Water Research, 2015, 75: 164-187.
|
5 |
Gude V G. Desalination and sustainability—an appraisal and current perspective[J]. Water Research, 2016, 89: 87-106.
|
6 |
Lim Y J, Goh K, Kurihara M, et al. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review[J]. Journal of Membrane Science, 2021, 629: 119292.
|
7 |
任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
|
|
Ren L Y, Zhao S, Wang Z, et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J]. CIESC Journal, 2020, 71(2): 475-486.
|
8 |
李智超, 郑瑜, 张润楠, 等. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
|
|
Li Z C, Zheng Y, Zhang R N, et al. Research progress of high flux and antifouling graphene oxide membranes[J]. CIESC Journal, 2022, 73(6): 2370-2380.
|
9 |
Liu B, Zhou K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications[J]. Progress in Materials Science, 2019, 100: 99-169.
|
10 |
何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894.
|
|
He D F, Wu J, Liu Z J, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894.
|
11 |
Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
|
12 |
Mahmoud K A, Mansoor B, Mansour A, et al. Functional graphene nanosheets: the next generation membranes for water desalination[J]. Desalination, 2015, 356: 208-225.
|
13 |
Cohen-Tanugi D, Lin L C, Grossman J C. Multilayer nanoporous graphene membranes for water desalination[J]. Nano Letters, 2016, 16(2): 1027-1033.
|
14 |
Sahu S, Zwolak M. Colloquium: ionic phenomena in nanoscale pores through 2D materials[J]. Reviews of Modern Physics, 2019, 91(2): 021004.
|
15 |
Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608.
|
16 |
Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464.
|
17 |
Qi H, Zhang Z Y, Li Z W, et al. Synergic effects of the nanopore size and surface charge on the ion selectivity of graphene membranes[J]. The Journal of Physical Chemistry C, 2021, 125(1): 507-514.
|
18 |
Zhang Z Q, Li S F, Mi B X, et al. Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off[J]. Science Advances, 2020, 6(34): eaba9471.
|
19 |
Li T G, Tu Q S, Li S F. Molecular dynamics modeling of nano-porous centrifuge for reverse osmosis desalination[J]. Desalination, 2019, 451: 182-191.
|
20 |
Zhang F J, Zhang Z Q, Liu Z, et al. On the temporal selectivity of desalination for a porous composite graphene-copper membrane (GCuM): a molecular dynamics study[J]. Desalination, 2023, 546: 116182.
|
21 |
Zhang Z Q, Dong X, Ye H F, et al. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field[J]. Journal of Applied Physics, 2015, 117(7): 074304.
|
22 |
Horn H W, Swope W C, Pitera J W, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew[J]. The Journal of Chemical Physics, 2004, 120(20): 9665-9678.
|
23 |
Delhommelle J, Millié P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation[J]. Molecular Physics, 2001, 99(8): 619-625.
|
24 |
Qiao R, Aluru N R. Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube[J]. Nano Letters, 2003, 3(8): 1013-1017.
|
25 |
Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190.
|
26 |
王孟妮, 刘珍, 顾浩, 等. 多孔石墨烯时间维度反渗透滤盐机理研究[J]. 物理学报, 2022, 71(13): 392-400.
|
|
Wang M N, Liu Z, Gu H, et al. Temporal reverse osmotic salt filtration mechanism of multi-layered porous graphene[J]. Acta Physica Sinica, 2022, 71(13): 392-400.
|
27 |
Ma M, Tocci G, Michaelides A, et al. Fast diffusion of water nanodroplets on graphene[J]. Nature Materials, 2016, 15(1): 66-71.
|
28 |
Xie Q, Alibakhshi M A, Jiao S P, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245.
|
29 |
Zhang Z Q, Ye H F, Liu Z, et al. Carbon nanotube-based charge-controlled speed-regulating nanoclutch[J]. Journal of Applied Physics, 2012, 111(11): 114304.
|
30 |
张忠强, 于凡顺, 刘珍, 等. 氢化多孔石墨烯反渗透特性及机理分析[J]. 物理学报, 2020, 69(9): 250-257.
|
|
Zhang Z Q, Yu F S, Liu Z, et al. Reverse osmotic characteristics and mechanism of hydrogenated porous graphene[J]. Acta Physica Sinica, 2020, 69(9): 250-257.
|
31 |
Wang Y H, He Z J, Gupta K M, et al. Molecular dynamics study on water desalination through functionalized nanoporous graphene[J]. Carbon, 2017, 116: 120-127.
|
32 |
Giri A K, Teixeira F, Cordeiro M N D S. Salt separation from water using graphene oxide nanochannels: a molecular dynamics simulation study[J]. Desalination, 2019, 460: 1-14.
|
33 |
张泽程, 刘珍, 王孟妮, 等. 柱状石墨烯膜反渗透滤盐特性及机理[J]. 物理学报, 2021, 70(9): 345-354.
|
|
Zhang Z C, Liu Z, Wang M N, et al. Reverse osmotic characteristics and mechanism of pillared graphene membranes for water desalination[J]. Acta Physica Sinica, 2021, 70(9): 345-354.
|
34 |
Ferrario M, Haughney M, McDonald I R, et al. Molecular-dynamics simulation of aqueous mixtures: methanol, acetone, and ammonia[J]. The Journal of Chemical Physics, 1990, 93(7): 5156-5166.
|
35 |
Chen B, Ivanov I, Klein M L, et al. Hydrogen bonding in water[J]. Physical Review Letters, 2003, 91(21): 215503.
|