1 |
王兴润, 张艳霞, 王琪, 等. 铬污染建筑废物不同清洗剂的作用效果比较[J]. 化工学报, 2012, 63(10): 3255-3261.
|
|
Wang X R, Zhang Y X, Wang Q, et al. Comparison of different washing agents for disposal of chromium-contaminated construction waste[J]. CIESC Journal, 2012, 63(10): 3255-3261.
|
2 |
朱文会, 李志涛, 王夏晖, 等. 不同异位修复工艺对高浓度铬渣污染土壤中Cr的去除特性[J]. 化工学报, 2018, 69(6): 2730-2736.
|
|
Zhu W H, Li Z T, Wang X H, et al. Characteristics of chromium removing using different ex-situ remediations in soil seriously contaminated by chromite ore processing residue[J]. CIESC Journal, 2018, 69(6): 2730-2736.
|
3 |
程治良, 全学军, 代黎, 等. 水力喷射空气旋流器用于含Cr(Ⅵ)废水处理[J]. 化工学报, 2014, 65(4): 1403-1410.
|
|
Cheng Z L, Quan X J, Dai L, et al. Treatment of Cr(Ⅵ)-containing wastewater in a water-sparged aerocyclone[J]. CIESC Journal, 2014, 65(4): 1403-1410.
|
4 |
Zafar A M, Javed M A, Hassan A A, et al. Groundwater remediation using zero-valent iron nanoparticles (nZVI)[J]. Groundwater for Sustainable Development, 2021, 15: 100694.
|
5 |
Vollprecht D, Krois L M, Sedlazeck K P, et al. Removal of critical metals from waste water by zero-valent iron[J]. Journal of Cleaner Production, 2019, 208: 1409-1420.
|
6 |
Guan X H, Sun Y K, Qin H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994—2014)[J]. Water Research, 2015, 75: 224-248.
|
7 |
Xie Y, Cwiertny D M. Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1, 1, 1, 2-tetrachloroethane and Cr(Ⅵ)[J]. Environmental Science & Technology, 2012, 46(15): 8365-8373.
|
8 |
Sun Y K, Li J X, Huang T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review[J]. Water Research, 2016, 100: 277-295.
|
9 |
曹贝, 李锦祥, 关小红. 弱磁场强化零价铁对水中U(Ⅵ)去除效能[J]. 化工学报, 2017, 68(8): 3282-3290.
|
|
Cao B, Li J X, Guan X H. Enhancing reactivity of zerovalent iron toward U(Ⅵ) by weak magnetic field[J]. CIESC Journal, 2017, 68(8): 3282-3290.
|
10 |
Su Y M, Adeleye A S, Keller A A, et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal[J]. Water Research, 2015, 74: 47-57.
|
11 |
Liu T X, Li X M, Waite T D. Depassivation of aged Fe0 by divalent cations: correlation between contaminant degradation and surface complexation constants[J]. Environmental Science & Technology, 2014, 48(24): 14564-14571.
|
12 |
Liu T X, Li X M, Waite T D. Depassivation of aged Fe0 by ferrous ions: implications to contaminant degradation[J]. Environmental Science & Technology, 2013, 47(23): 13712-13720.
|
13 |
Liu T X, Li X M, Waite T D. Depassivation of aged Fe0 by inorganic salts: implications to contaminant degradation in seawater[J]. Environmental Science & Technology, 2013, 47(13): 7350-7356.
|
14 |
Lipczynska-Kochany E, Harms S, Milburn R, et al. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J]. Chemosphere, 1994, 29(7): 1477-1489.
|
15 |
Kim E J, Kim J H, Azad A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1457-1462.
|
16 |
Li J X, Zhang X Y, Liu M C, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions[J]. Environmental Science & Technology, 2018, 52(5): 2988-2997.
|
17 |
Li D, Mao Z, Zhong Y, et al. Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron[J]. Water Research, 2016, 103: 1-9.
|
18 |
Wang B, Dong H R, Li L, et al. Influence of different co-contaminants on trichloroethylene removal by sulfide-modified nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 381: 122773.
|
19 |
Dong H R, Zhang C, Deng J M, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution[J]. Water Research, 2018, 135: 1-10.
|
20 |
Xu J, Cao Z, Zhou H, et al. Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron[J]. Environmental Science & Technology, 2019, 53(22): 13344-13352.
|
21 |
Semerád J, Filip J, Ševců A, et al. Environmental fate of sulfidated nZVI particles: the interplay of nanoparticle corrosion and toxicity during aging[J]. Environmental Science: Nano, 2020, 7(6): 1794-1806.
|
22 |
Fan D M, Johnson G O, Tratnyek P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-9565.
|
23 |
Cao Z, Li H, Xu X H, et al. Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination[J]. Chemical Engineering Journal, 2020, 394: 124876.
|
24 |
Liang L P, Guan X H, Shi Z, et al. Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron[J]. Environmental Science & Technology, 2014, 48(11): 6326-6334.
|
25 |
Xu H Y, Sun Y K, Li J X, et al. Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field[J]. Environmental Science & Technology, 2016, 50(15): 8214-8222.
|
26 |
Ling J F, Qiao J L, Song Y D, et al. Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(Ⅵ) removal[J]. Chemical Engineering Journal, 2019, 378: 122124.
|
27 |
Li J X, Zhang X Y, Sun Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science & Technology, 2017, 51(23): 13533-13544.
|
28 |
Mangayayam M C, Perez J P H, Dideriksen K, et al. Structural transformation of sulfidized zerovalent iron and its impact on long-term reactivity[J]. Environmental Science: Nano, 2019, 6(11): 3422-3430.
|
29 |
Gu Y W, Gong L, Qi J L, et al. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: experimental evidences and mechanism[J]. Water Research, 2019, 159: 233-241.
|
30 |
Gu Y W, Wang B B, He F, et al. Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination[J]. Environmental Science & Technology, 2017, 51(21): 12653-12662.
|
31 |
Xu J, Wang Y, Weng C, et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties[J]. Environmental Science & Technology, 2019, 53(10): 5936-5945.
|