化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1765-1778.DOI: 10.11949/0438-1157.20241157
赵鹏飞1(
), 戚若玫2, 郭新锋1, 方虎3, 徐庐飞1, 李潇1, 林今2,4
收稿日期:2024-10-18
修回日期:2024-12-17
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
赵鹏飞
作者简介:赵鹏飞(1990—),男,硕士,高级工程师,zhaopengfei.xxsy@sinopec.com
基金资助:
Pengfei ZHAO1(
), Ruomei QI2, Xinfeng GUO1, Hu FANG3, Lufei XU1, Xiao LI1, Jin LIN2,4
Received:2024-10-18
Revised:2024-12-17
Online:2025-04-25
Published:2025-05-12
Contact:
Pengfei ZHAO
摘要:
针对大型碱性水电解制氢系统的气体交叉问题,分析了氧气中杂质氢气的引入机制,建立了氧中氢(HTO)计算模型,采用千标方级制氢装置验证了模型的准确性,通过模型量化了各引入机制对HTO的贡献比例,研究了操作参数对HTO的影响规律,提出了氧中氢控制措施。结果表明:模型对HTO的预测精度较高,可有效反映低负载工况下系统氧中氢特性;碱液循环混合、氢气跨膜浓差扩散是形成HTO的主要机制,旁路电流电解、压差对流对HTO影响较小,但旁路电流对系统低负载时的产氧量影响较大,间接导致了HTO升高;可采取优化制氢装置操作参数、提高低负载时氧气流量等措施对氧中氢进行控制。研究结果能够为大型可再生能源耦合碱水制氢系统的设计和项目运行提供参考。
中图分类号:
赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778.
Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system[J]. CIESC Journal, 2025, 76(4): 1765-1778.
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| PPS隔膜厚度dsep | 0.00085 m | r1 | 4.46×10-5 Ω·m2 |
| PPS隔膜孔隙率ε | 0.59 | r2 | 6.89×10-9 Ω·m2/℃ |
| PPS隔膜迂曲度τ | 1.5 | t1 | -0.015 m2/A |
| 隔膜渗透系数Ksep | 1.2×10-12 m2 | t2 | 2.00 m2·℃/A |
| 总传质系数拟合常数f | 9.82×10-5 | t3 | 15.24 m2·℃2/A |
| 隔膜两侧压差Δp | 49 Pa | d1 | -3.13×10-6 Ω·m2 |
| 含气率ϕ | 0.5 | d2 | 4.47×10-7 Ω·m2/bar |
表1 模型参数设置
Table 1 Parameters for the HTO calculation model
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| PPS隔膜厚度dsep | 0.00085 m | r1 | 4.46×10-5 Ω·m2 |
| PPS隔膜孔隙率ε | 0.59 | r2 | 6.89×10-9 Ω·m2/℃ |
| PPS隔膜迂曲度τ | 1.5 | t1 | -0.015 m2/A |
| 隔膜渗透系数Ksep | 1.2×10-12 m2 | t2 | 2.00 m2·℃/A |
| 总传质系数拟合常数f | 9.82×10-5 | t3 | 15.24 m2·℃2/A |
| 隔膜两侧压差Δp | 49 Pa | d1 | -3.13×10-6 Ω·m2 |
| 含气率ϕ | 0.5 | d2 | 4.47×10-7 Ω·m2/bar |
| 工况 | 工况描述 | 操作参数 | 测试负载范围 |
|---|---|---|---|
| 1 | 基准工况 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~110% |
| 2 | 降温测试 | 碱液温度42℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~80% |
| 3 | 降流量测试 | 碱液温度42℃,浓度30%(质量),循环量32.9 m3/h,分离压力17.4 bar | 30%~60% |
| 4 | 降压测试 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力15.3 bar | 30%~50% |
表2 各工况操作参数
Table 2 Operating parameters for each working condition
| 工况 | 工况描述 | 操作参数 | 测试负载范围 |
|---|---|---|---|
| 1 | 基准工况 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~110% |
| 2 | 降温测试 | 碱液温度42℃,浓度30%(质量),循环量72.5 m3/h,分离压力17.4 bar | 30%~80% |
| 3 | 降流量测试 | 碱液温度42℃,浓度30%(质量),循环量32.9 m3/h,分离压力17.4 bar | 30%~60% |
| 4 | 降压测试 | 碱液温度70℃,浓度30%(质量),循环量72.5 m3/h,分离压力15.3 bar | 30%~50% |
| 碱液温度/℃ | LHTO1.5 | 碱液流量/(m3/h) | LHTO1.5 | 分离压力/MPa | LHTO1.5 | 碱液浓度/%(质量) | LHTO1.5 |
|---|---|---|---|---|---|---|---|
| 80 | 39.6 | 90 | 44.6 | 1.8 | 39.2 | 35.0 | 31.2 |
| 70 | 38.4 | 75 | 39.2 | 1.5 | 34.7 | 32.5 | 34.2 |
| 60 | 37.2 | 60 | 34.1 | 1.2 | 30.2 | 30.0 | 38.4 |
| 50 | 36.4 | 45 | 29.4 | 0.9 | 25.6 | 27.5 | 43.3 |
| 40 | 35.8 | 30 | 24.8 | 0.6 | 20.9 | 25.0 | 48.8 |
表3 不同操作参数下LHTO1.5
Table 3 LHTO1.5 under different process parameters
| 碱液温度/℃ | LHTO1.5 | 碱液流量/(m3/h) | LHTO1.5 | 分离压力/MPa | LHTO1.5 | 碱液浓度/%(质量) | LHTO1.5 |
|---|---|---|---|---|---|---|---|
| 80 | 39.6 | 90 | 44.6 | 1.8 | 39.2 | 35.0 | 31.2 |
| 70 | 38.4 | 75 | 39.2 | 1.5 | 34.7 | 32.5 | 34.2 |
| 60 | 37.2 | 60 | 34.1 | 1.2 | 30.2 | 30.0 | 38.4 |
| 50 | 36.4 | 45 | 29.4 | 0.9 | 25.6 | 27.5 | 43.3 |
| 40 | 35.8 | 30 | 24.8 | 0.6 | 20.9 | 25.0 | 48.8 |
| 实验编号 | 碱液温度 (T) | 碱液循环量(Q) | 分离压力(p) | 碱液浓度(M) | LHTO1.5 |
|---|---|---|---|---|---|
| 1 | 80.00 | 90.00 | 1.80 | 0.35 | 0.3885 |
| 2 | 80.00 | 60.00 | 1.20 | 0.30 | 0.2857 |
| 3 | 80.00 | 30.00 | 0.60 | 0.25 | 0.1857 |
| 4 | 60.00 | 90.00 | 1.20 | 0.25 | 0.4140 |
| 5 | 60.00 | 60.00 | 0.60 | 0.35 | 0.1594 |
| 6 | 60.00 | 30.00 | 1.80 | 0.30 | 0.2410 |
| 7 | 40.00 | 90.00 | 0.60 | 0.30 | 0.1986 |
| 8 | 40.00 | 60.00 | 1.80 | 0.25 | 0.4128 |
| 9 | 40.00 | 30.00 | 1.20 | 0.35 | 0.1526 |
| 平均值1 | 0.287 | 0.334 | 0.347 | 0.234 | |
| 平均值2 | 0.271 | 0.286 | 0.284 | 0.242 | |
| 平均值3 | 0.255 | 0.193 | 0.181 | 0.337 | |
| R值 | 0.032 | 0.141 | 0.166 | 0.103 | |
| 均方差 | 0.001 | 0.015 | 0.021 | 0.010 | |
| F值 | 1 | 19.992 | 27.517 | 13.069 |
表4 正交设计及计算结果
Table 4 Orthogonal design and results
| 实验编号 | 碱液温度 (T) | 碱液循环量(Q) | 分离压力(p) | 碱液浓度(M) | LHTO1.5 |
|---|---|---|---|---|---|
| 1 | 80.00 | 90.00 | 1.80 | 0.35 | 0.3885 |
| 2 | 80.00 | 60.00 | 1.20 | 0.30 | 0.2857 |
| 3 | 80.00 | 30.00 | 0.60 | 0.25 | 0.1857 |
| 4 | 60.00 | 90.00 | 1.20 | 0.25 | 0.4140 |
| 5 | 60.00 | 60.00 | 0.60 | 0.35 | 0.1594 |
| 6 | 60.00 | 30.00 | 1.80 | 0.30 | 0.2410 |
| 7 | 40.00 | 90.00 | 0.60 | 0.30 | 0.1986 |
| 8 | 40.00 | 60.00 | 1.80 | 0.25 | 0.4128 |
| 9 | 40.00 | 30.00 | 1.20 | 0.35 | 0.1526 |
| 平均值1 | 0.287 | 0.334 | 0.347 | 0.234 | |
| 平均值2 | 0.271 | 0.286 | 0.284 | 0.242 | |
| 平均值3 | 0.255 | 0.193 | 0.181 | 0.337 | |
| R值 | 0.032 | 0.141 | 0.166 | 0.103 | |
| 均方差 | 0.001 | 0.015 | 0.021 | 0.010 | |
| F值 | 1 | 19.992 | 27.517 | 13.069 |
| 碱液温度/℃ | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) | 分离压力/MPa | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) |
|---|---|---|---|---|---|---|---|
| 70(基准工况) | 1.622 | 2532.2 | 8.590 | 1.5 | 1.601 | 2290.5 | 7.738 |
| 60 | 1.671 | 2458.1 | 8.591 | 1.2 | 1.573 | 1990.1 | 6.726 |
| 50 | 1.723 | 2399.8 | 8.648 | 0.9 | 1.542 | 1690.8 | 5.788 |
| 40 | 1.778 | 2360.4 | 8.777 | 0.6 | 1.508 | 1380.1 | 4.924 |
表5 调整碱液温度和分离压力对制氢网电耗量的影响
Table 5 The impact of adjusting the electrolyte temperature and separation pressure on the grid power consumption of hydrogen production
| 碱液温度/℃ | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) | 分离压力/MPa | 小室电压/V | 电解槽电流/A | 制氢网电耗量/(kWh/kg) |
|---|---|---|---|---|---|---|---|
| 70(基准工况) | 1.622 | 2532.2 | 8.590 | 1.5 | 1.601 | 2290.5 | 7.738 |
| 60 | 1.671 | 2458.1 | 8.591 | 1.2 | 1.573 | 1990.1 | 6.726 |
| 50 | 1.723 | 2399.8 | 8.648 | 0.9 | 1.542 | 1690.8 | 5.788 |
| 40 | 1.778 | 2360.4 | 8.777 | 0.6 | 1.508 | 1380.1 | 4.924 |
| 1 | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
| Li Y Y, Deng X T, Gu J J, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
| 2 | 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175. |
| Wang P C, Wan L, Xu Z A, et al. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC Journal, 2021, 72(12): 6161-6175. | |
| 3 | Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248. |
| 4 | 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350. |
| Chen M P, Ren J X, Li F Q. Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 344-350. | |
| 5 | Haug P. Experimental and theoretical investigation of gas purity in alkaline water electrolysis[D]. Germany: Technische Universitaet Clausthal, 2019. |
| 6 | Hu S, Guo B, Ding S L, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099. |
| 7 | Emam A S, Hamdan M O, Abu-Nabah B A, et al. A review on recent trends, challenges, and innovations in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 64: 599-625. |
| 8 | Trinke P, Haug P, Brauns J, et al. Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513. |
| 9 | Martin A, Trinke P, Stähler M, et al. The effect of cell compression and cathode pressure on hydrogen crossover in PEM water electrolysis[J]. Journal of the Electrochemical Society, 2022, 169(1): 014502. |
| 10 | 夏杨红, 胡致远, 韦巍, 等. 可再生能源电解制氢宽范围运行控制策略[J]. 太阳能学报, 2024, 45(8): 34-43. |
| Xia Y H, Hu Z Y, Wei W, et al. Wide range operation control strategy for electrolysis hydrogen production based on renewable energy[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 34-43. | |
| 11 | Dogan D, Hecker B, Schmid B, et al. Experimental determination of stray currents in parallel operated cells exemplified on alkaline water electrolysis[J]. Electrochimica Acta, 2024, 500: 144767. |
| 12 | de Groot M T, Kraakman J, Garcia Barros R L. Optimal operating parameters for advanced alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(82): 34773-34783. |
| 13 | Zhang T, Song L J, Yang F Y, et al. Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50 Nm3 H2/h[J]. Applied Energy, 2024, 360: 122852. |
| 14 | Sánchez M, Amores E, Rodríguez L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
| 15 | 宁楠. 水电解制氢装置宽功率波动适应性研究[J]. 舰船科学技术, 2017, 39(11): 133-136. |
| Ning N. Research on hydrogen generation system by water electrolysis under wide power fluctuation[J]. Ship Science and Technology, 2017, 39(11): 133-136. | |
| 16 | Sakas G, Ibáñez-Rioja A, Ruuskanen V, et al. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4328-4345. |
| 17 | Sakas G, Ibáñez-Rioja A, Pöyhönen S, et al. Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant[J]. Applied Energy, 2024, 359: 122732. |
| 18 | Sakas G, Ibáñez-Rioja A, Pöyhönen S, et al. Influence of shunt currents in industrial-scale alkaline water electrolyzer plants[J]. Renewable Energy, 2024, 225: 120266. |
| 19 | Rasten E. (Invited) shunt-currents in alkaline water-electrolyzers and renewable energy[J]. ECS Transactions, 2024, 113(9): 25-41. |
| 20 | Qi R M, Becker M, Brauns J, et al. Channel design optimization of alkaline electrolysis stacks considering the trade-off between current efficiency and pressure drop[J]. Journal of Power Sources, 2023, 579: 233222. |
| 21 | Haug P, Koj M, Turek T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418. |
| 22 | Shoor S K, Walker R D, Gubbins K E. Salting out of nonpolar gases in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1969, 73(2): 312-317. |
| 23 | Tham M J, Walker R D Jr, Gubbins K E. Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1970, 74(8): 1747-1751. |
| 24 | Qi R M, Gao X P, Lin J, et al. Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International Journal of Hydrogen Energy, 2021, 46(73): 35997-36011. |
| 25 | Haug P, Kreitz B, Koj M, et al. Process modelling of an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15689-15707. |
| 26 | Trinke P, Bensmann B, Hanke-Rauschenbach R. Current density effect on hydrogen permeation in PEM water electrolyzers[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14355-14366. |
| 27 | Frey F. Experimental set-up for bubble behaviour in a high pressure alkaline electrolyte[D]. Argentina: Instituto Tecnológico de Buenos Aires, 2016. |
| 28 | Ruetschi P, Amlie R F. Solubility of hydrogen in potassium hydroxide and sulfuric acid. salting-out and hydration[J]. The Journal of Physical Chemistry, 1966, 70(3): 718-723. |
| 29 | Kraakman J T. Gas crossover in alkaline water electrolysis[D]. Netherlands: Eindhoven University of Technology, 2023. |
| 30 | Balej J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges[J]. International Journal of Hydrogen Energy, 1985, 10(4): 233-243. |
| 31 | Keçebaş A, Kayfeci M, Bayat M. Electrochemical hydrogen generation[M]//Solar Hydrogen Production. Academic Press, 2019: 299-317. |
| 32 | Burney H S, White R E. Predicting shunt currents in stacks of bipolar plate cells with conducting manifolds[J]. Journal of the Electrochemical Society, 1988, 135(7): 1609. |
| 33 | Divisek J, Jung R, Britz D. Potential distribution and electrode stability in a bipolar electrolysis cell[J]. Journal of Applied Electrochemistry, 1990, 20(2): 186-195. |
| 34 | Abdel Haleem A, Huyan J, Nagasawa K, et al. Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers[J]. Journal of Power Sources, 2022, 535: 231454. |
| 35 | Mitsushima S, Abdel Haleem A, Nagasawa K, et al. (Invited) leak current analysis of stop operation and its modeling for the development of bipolar alkaline water electrolyzer electrodes[J]. ECS Meeting Abstracts, 2022, MA2022-01(33): 1344. |
| 36 | Amores E, Rodríguez J, Carreras C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13063-13078. |
| 37 | Ulleberg Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
| 38 | Qi R M, Li J R, Lin J, et al. Thermal modeling and controller design of an alkaline electrolysis system under dynamic operating conditions[J]. Applied Energy, 2023, 332: 120551. |
| 39 | 戚若玫. 面向可再生能源消纳的碱性电制氢系统建模与优化控制[D]. 北京: 清华大学, 2023. |
| Qi R M. Modeling and optimal control of alkaline electric hydrogen production system for renewable energy consumption[D]. Beijing: Tsinghua University, 2023. | |
| 40 | Kikuchi K, Takeda H, Rabolt B, et al. Hydrogen particles and supersaturation in alkaline water from an alkali–ion–water electrolyzer[J]. Journal of Electroanalytical Chemistry, 2001, 506(1): 22-27. |
| 41 | Hodges A, Renz S, Lohmann-Richters F, et al. Critical analysis of published physical property data for aqueous potassium hydroxide. Collation into detailed models for alkaline electrolysis[J]. Journal of Chemical & Engineering Data, 2023, 68(7): 1485-1506. |
| [1] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [2] | 陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721. |
| [3] | 梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462. |
| [4] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [5] | 徐桂培, 孙倩, 赖洁文, 卢毅锋, 邸会芳, 黄辉, 王振兵. 电化学双电层电容器失效机理的研究进展[J]. 化工学报, 2025, 76(3): 951-962. |
| [6] | 万俊, 宋佳芮, 范春煌, 魏乐乐, 聂依娜, 刘琳. 高效空穴转移助力光催化碱性甲醇-水溶液制氢[J]. 化工学报, 2025, 76(3): 1064-1075. |
| [7] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [8] | 白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595. |
| [9] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [10] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [11] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
| [12] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
| [13] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
| [14] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
| [15] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号