化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2101-2118.DOI: 10.11949/0438-1157.20241215
收稿日期:
2024-10-31
修回日期:
2025-01-17
出版日期:
2025-05-25
发布日期:
2025-06-13
通讯作者:
汪勇
作者简介:
陆艳秋(1991—),女,博士,副研究员,yanqiulu@seu.edu.cn
基金资助:
Yanqiu LU(), Yang DI, Wenbo SHI, Congcong YIN, Yong WANG(
)
Received:
2024-10-31
Revised:
2025-01-17
Online:
2025-05-25
Published:
2025-06-13
Contact:
Yong WANG
摘要:
膜分离技术因其高效与环境友好的特性,在多个领域得到了广泛应用。然而,传统膜在复杂环境中的适应性有限,难以满足不断提升的分离需求。智能响应膜能够响应光、温度、pH、电场等外界刺激,实现膜结构与性能的动态调控,展现出应对多变应用需求的优势。随着共价有机框架、金属有机框架和共轭微孔聚合物等新型有机多孔聚合物的发展,智能响应膜的设计和优化迎来了新的机遇。该综述总结了新型有机多孔聚合物智能响应膜的研究进展,分析了不同外界刺激对膜结构和性能的调控,梳理了制膜方法及响应基团的引入策略,并探讨了未来的发展方向与挑战。
中图分类号:
陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118.
Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers[J]. CIESC Journal, 2025, 76(5): 2101-2118.
图4 (a)TbDa-Azo膜的光致异构示意图[62];(b)azo-CMP 膜的光致异构示意图[64];(c)trZT-MOF纳米片膜的温度致异构示意图[65];(d)二维MOF膜的光门控离子传输示意图[67];(e)CC3α结构以及经甲醇浸泡后形成的CC3γ′结构[68]
Fig.4 (a) Schematic illustration of the light-switchable structural change of TbDa-Azo membrane [62]; (b) Schematic illustration of light-switchable structural change of the azo-CMP membrane[64]; (c) Schematic illustration of the temperature-switchable structural change of trZT-MOF nanosheet membrane[65]; (d) Schematic illustration of light-gated ion transport through the 2D MOF membrane [67]; (e) Schematic illustration of CC3α structure and CC3γ′ structure formed by soaking in MeOH[68]
图5 (a)B15C5膜实现Na+响应的可控乳液分离示意图,以及膜在含Na+和不含Na+条件下的接触角对比[69];(b)CC-ZIF-PIL 膜可切换润湿性的示意图,以及水滴和油滴在膜表面的接触角和照片[74]
Fig.5 (a) Schematic illustration of Na+-responsive controllable emulsion separation through B15C5-coated membranes and contact angles of the as-prepared material without and with Na+[69]; (b) Schematic illustration of the switchable wettability of CC-ZIF-PIL membrane and digital photographs of contact angle and water and oil droplets on the membrane[74]
图6 (a)电场中电压调控BABD-CB膜的示意图[78];(b)电压调控Janus膜的工作原理示意图[81];(c)COF-DT膜在不同pH下的化学反应特性示意图,以及COF-DT在酸性、中性和碱性条件下的DFT相对能量和电荷分布[82];(d)COF-Cys膜可切换Na+/K+选择性的示意图[83]
Fig.6 (a) Schematic illustration of the voltage-gated BABD-CB membrane in the electric field[78]; (b) Schematic illustration of working principle of the electro-controlled Janus membrane[81]; (c) Proposed chemical reactivity features of COF-DT membranes at various pH values and DFT relative energies and charge distribution for the small-molecule model compound for COF-DT in acidic, neutral, and basic conditions[82]; (d) Schematic illustration of switchable Na+/K+ selectivity of COF-Cys membranes[83]
图9 通过真空辅助自组装技术制备3DOM ZIF-8的膜的示意图[66]
Fig.9 Schematic illustration of the 3DOM ZIF-8-based membrane fabricated by vacuum assisted self-assembly method[66]
响应类型 | 机理 | 特点 | 响应对膜结构的调控优点和缺点 | 应用范围 |
---|---|---|---|---|
光响应 | 光响应基团通过光致异构化改变膜的孔结构等,实现可控分离 | 非接触性、可控性强,适用于远程调控;响应速度快,可实现高精度分离 | 优点:无须外加化学试剂,通过光照方向和强度可灵活调控膜孔结构; 缺点:需特定波长光源,长期光照可能导致光响应基团降解,影响膜稳定性 | 纳滤、 气体分离等 |
温度响应 | 温敏聚合物通过相转变改变膜的孔结构等,实现可控分离 | 易操作,可利用环境温度调节,适用于多种应用环境 | 优点:通过温度可对膜孔径进行调适; 缺点:温敏聚合物的长期耐用性较低,可能导致膜性能衰减 | 纳滤、 膜抗污染等 |
电响应 | 外加电场通过调控膜表面的电荷分布和密度,实现可控分离 | 调控精确,响应速度快,适用于高精度分离任务 | 优点:外加电场可精准调控电荷分布,表面电荷的变化也会引起膜亲疏水性的变化; 缺点:电场分布不均可能影响电荷分布 | 纳滤、油水分离、膜抗污染等 |
pH响应 | 酸碱性基团通过电离状态变化调节膜表面电荷密度,实现可控分离 | 对化学环境变化高度敏感,可灵活调控分离性能;适用于动态离子分离任务 | 优点:pH变化可显著调节表面电荷密度,提升对带电离子的选择性; 缺点:极端pH条件下可导致膜材料降解;酸碱溶液的使用需考虑环保问题 | 纳滤、 脱盐等 |
离子响应 | 通过与离子结合或解离,实现可控分离 | 选择性强,适合特定离子分离;响应行为与分离效果密切相关 | 优点:可针对特定离子调控膜表面电荷,提升离子选择性,此外,离子与膜的结合对孔径有微调作用; 缺点:对离子浓度与类型依赖较高 | 水处理、 资源回收等 |
表1 智能响应膜的特点及其应用
Table 1 Characteristics and applications of smart responsive membranes
响应类型 | 机理 | 特点 | 响应对膜结构的调控优点和缺点 | 应用范围 |
---|---|---|---|---|
光响应 | 光响应基团通过光致异构化改变膜的孔结构等,实现可控分离 | 非接触性、可控性强,适用于远程调控;响应速度快,可实现高精度分离 | 优点:无须外加化学试剂,通过光照方向和强度可灵活调控膜孔结构; 缺点:需特定波长光源,长期光照可能导致光响应基团降解,影响膜稳定性 | 纳滤、 气体分离等 |
温度响应 | 温敏聚合物通过相转变改变膜的孔结构等,实现可控分离 | 易操作,可利用环境温度调节,适用于多种应用环境 | 优点:通过温度可对膜孔径进行调适; 缺点:温敏聚合物的长期耐用性较低,可能导致膜性能衰减 | 纳滤、 膜抗污染等 |
电响应 | 外加电场通过调控膜表面的电荷分布和密度,实现可控分离 | 调控精确,响应速度快,适用于高精度分离任务 | 优点:外加电场可精准调控电荷分布,表面电荷的变化也会引起膜亲疏水性的变化; 缺点:电场分布不均可能影响电荷分布 | 纳滤、油水分离、膜抗污染等 |
pH响应 | 酸碱性基团通过电离状态变化调节膜表面电荷密度,实现可控分离 | 对化学环境变化高度敏感,可灵活调控分离性能;适用于动态离子分离任务 | 优点:pH变化可显著调节表面电荷密度,提升对带电离子的选择性; 缺点:极端pH条件下可导致膜材料降解;酸碱溶液的使用需考虑环保问题 | 纳滤、 脱盐等 |
离子响应 | 通过与离子结合或解离,实现可控分离 | 选择性强,适合特定离子分离;响应行为与分离效果密切相关 | 优点:可针对特定离子调控膜表面电荷,提升离子选择性,此外,离子与膜的结合对孔径有微调作用; 缺点:对离子浓度与类型依赖较高 | 水处理、 资源回收等 |
1 | Wang L D, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
2 | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
3 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
4 | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
5 | Yu D H, Xiao X, Shokoohi C, et al. Recent advances in stimuli-responsive smart membranes for nanofiltration[J]. Advanced Functional Materials, 2023, 33(9): 2211983. |
6 | Dansawad P, Yang Y J, Li X, et al. Smart membranes for oil/water emulsions separation: a review[J]. Advanced Membranes, 2022, 2: 100039. |
7 | Yan D, Wang Z F, Zhang Z J. Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications[J]. Accounts of Chemical Research, 2022, 55(7): 1047-1058. |
8 | Huang T F, Su Z X, Hou K, et al. Advanced stimuli-responsive membranes for smart separation[J]. Chemical Society Reviews, 2023, 52(13): 4173-4207. |
9 | Wang Z F, Zhang S N, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735. |
10 | Lu Y Q, Liu W, Liu J T, et al. A review on 2D porous organic polymers for membrane-based separations: processing and engineering of transport channels[J]. Advanced Membranes, 2021, 1: 100014. |
11 | Wang J Y, Zhou Y L, Liu X L, et al. Design and application of metal-organic framework membranes for gas and liquid separations[J]. Separation and Purification Technology, 2024, 329: 125178. |
12 | Liu G L, Yuan Y D, Wang J, et al. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages[J]. Journal of the American Chemical Society, 2018, 140(20): 6231-6234. |
13 | Lal G, Derakhshandeh M, Akhtar F, et al. Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra[J]. Journal of the American Chemical Society, 2019, 141(2): 1045-1053. |
14 | Chen X Y, Geng K Y, Liu R Y, et al. Covalent organic frameworks: chemical approaches to designer structures and built-in functions[J]. Angewandte Chemie International Edition, 2020, 59(13): 5050-5091. |
15 | Zhang J, Han X, Wu X W, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. Journal of the American Chemical Society, 2017, 139(24): 8277-8285. |
16 | Zhang S Q, Cheng G, Guo L P, et al. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2020, 59(15): 6007-6014. |
17 | Schneemann A, Bon V, Schwedler I, et al. Flexible metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6062-6096. |
18 | Katz J S, Burdick J A. Light-responsive biomaterials: development and applications[J]. Macromolecular Bioscience, 2010, 10(4): 339-348. |
19 | Díaz-Moscoso A, Ballester P. Light-responsive molecular containers[J]. Chemical Communications, 2017, 53(34): 4635-4652. |
20 | Gao Y Y, Han B, Zhao W Y, et al. Light-responsive actuators based on graphene[J]. Frontiers in Chemistry, 2019, 7: 506. |
21 | Gelebart A H, Mulder D J, Vantomme D G, et al. A rewritable, reprogrammable, dual light-responsive polymer actuator[J]. Angewandte Chemie International Edition, 2017, 56(43): 13436-13439. |
22 | Jerca F A, Jerca V V, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes[J]. Nature Reviews. Chemistry, 2022, 6(1): 51-69. |
23 | Liang H Q, Guo Y, Peng X S, et al. Light-gated cation-selective transport in metal-organic framework membranes[J]. Journal of Materials Chemistry A, 2020, 8(22): 11399-11405. |
24 | Liu J T, Wang S F, Huang T F, et al. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation[J]. Science Advances, 2020, 6(34): eabb3188. |
25 | Kanj A B, Müller K, Heinke L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups[J]. Macromolecular Rapid Communications, 2018, 39(1): 1700239. |
26 | Kumar G S, Neckers D C. Photochemistry of azobenzene-containing polymers[J]. Chemical Reviews, 1989, 89(8): 1915-1925. |
27 | Li J J, Zhou Y N, Luo Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review[J]. Progress in Polymer Science, 2018, 87: 1-33. |
28 | Wang Q Q, Cui J Y, Xie A T, et al. PVDF composite membrane with robust UV-induced self-cleaning performance for durable oil/water emulsions separation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110: 130-139. |
29 | Liu Y N, Su Y L, Guan J Y, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
30 | Yue R Y, Guan J, Zhang C M, et al. Photoinduced superwetting membranes for separation of oil-in-water emulsions[J]. Separation and Purification Technology, 2020, 241: 116536. |
31 | Zhan H, Peng N, Lei X J, et al. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion[J]. Carbohydrate Polymers, 2018, 201: 464-470. |
32 | Yang Z Q, He C Q, Sui H, et al. Recent advances of CO2-responsive materials in separations[J]. Journal of CO2 Utilization, 2019, 30: 79-99. |
33 | Bajpai A K, Shukla S K, Bhanu S, et al. Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science, 2008, 33(11): 1088-1118. |
34 | Roy D, Brooks W L A, Sumerlin B S. New directions in thermoresponsive polymers[J]. Chemical Society Reviews, 2013, 42(17): 7214-7243. |
35 | Sponchioni M, Palmiero U C, Moscatelli D. Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2019, 102: 589-605.] |
36 | Kim Y J, Matsunaga Y T. Thermo-responsive polymers and their application as smart biomaterials[J]. Journal of Materials Chemistry. B, 2017, 5(23): 4307-4321. |
37 | Wei B B, Wang K, Wang J R, et al. Thermo-modulated nanofibrous skin covered Janus membranes for efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 127935. |
38 | Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution[J]. Macromolecular Rapid Communications, 2012, 33(22): 1898-1920. |
39 | Hung W S, Ho S Y, Chiao Y H, et al. Electrical tunable PVDF/graphene membrane for controlled molecule separation[J]. Chemistry of Materials, 2020, 32(13): 5750-5758. |
40 | Widakdo J, Chiao Y H, Lai Y L, et al. Mechanism of a self-assembling smart and electrically responsive PVDF-graphene membrane for controlled gas separation[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30915-30924. |
41 | Xu L L, Liu S, Yu L, et al. Tuneable ion transport by electrically responsive membranes under electrical assistance[J]. Journal of Membrane Science, 2022, 663: 121046. |
42 | Puguan J M C, Rathod P V, More P P, et al. Achieving transmissive-to-black chromism via engineered dual electro-thermoresponsive single-molecule for full modulation of solar transmittance[J]. Chemical Engineering Journal, 2022, 437: 135157. |
43 | Kahlfuss D C, Gibaud D T, Denis-Quanquin S, et al. Redox-induced molecular metamorphism promoting a sol/gel phase transition in a viologen-based coordination polymer[J]. Chemistry-A European Journal, 2018, 24(49): 13009-13019. |
44 | Yang Y, Xu L L, Jiang D J, et al. Self-powered controllable transdermal drug delivery system[J]. Advanced Functional Materials, 2021, 31(36): 2104092. |
45 | Milani G M, Coutinho I T, Ambrosio F N, et al. Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications[J]. Journal of Applied Polymer Science, 2022, 139(18): 52091. |
46 | El-Samak A A, Ponnamma D, Hassan M K, et al. Designing flexible and porous fibrous membranes for oil water separation: a review of recent developments[J]. Polymer Reviews, 2020, 60(4): 671-716. |
47 | Cai Y H, Chen D Y, Li N J, et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation[J]. Journal of Membrane Science, 2018, 555: 69-77. |
48 | Dübner M, Naoum M E, Spencer N D, et al. From pH- to light-response: postpolymerization modification of polymer brushes grafted onto microporous polymeric membranes[J]. ACS Omega, 2017, 2(2): 455-461. |
49 | Liao X F, Li H Q, Su X J, et al. Mussel-inspired cotton fabric with pH-responsive superwettability for bidirectional oil-water separation[J]. Journal of Materials Science, 2019, 54(4): 3648-3660. |
50 | Schoeller J, Itel F, Wuertz-Kozak K, et al. pH-responsive electrospun nanofibers and their applications[J]. Polymer Reviews, 2022, 62(2): 351-399. |
51 | Qu M N, He D, Luo Z X, et al. Facile preparation of a multifunctional superhydrophilic PVDF membrane for highly efficient organic dyes and heavy metal ions adsorption and oil/water emulsions separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128231. |
52 | Al-Husaini I S, Yusoff A R M, Lau W J, et al. Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution[J]. Separation and Purification Technology, 2019, 212: 205-214. |
53 | Zhu L P, Smith P P, Boyes S G. pH-responsive polymers for imaging acidic biological environments in tumors[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(14): 1062-1067. |
54 | Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science, 2004, 29(12): 1173-1222. |
55 | Liu Z, Liu L, Ju X J, et al. K+-recognition capsules with squirting release mechanisms[J]. Chemical Communications, 2011, 47(45): 12283-12285. |
56 | Mi P, Ju X J, Xie R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release[J]. Polymer, 2010, 51(7): 1648-1653. |
57 | Liu Z, Luo F, Ju X J, et al. Positively K+-responsive membranes with functional gates driven by host-guest molecular recognition[J]. Advanced Functional Materials, 2012, 22(22): 4742-4750. |
58 | Liu Z, Luo F, Ju X J, et al. Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition[J]. Journal of Materials Chemistry A, 2013, 1(34): 9659-9671. |
59 | Wu H, Jones L O, Wang Y, et al. High-efficiency gold recovery using cucurbit [6] uril[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38768-38777. |
60 | Fang Y Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: from recognition to supramolecular assembly[J]. Coordination Chemistry Reviews, 2020, 415: 213313. |
61 | Liu W Q, Jones L O, Wu H, et al. Supramolecular gold stripping from activated carbon using α-cyclodextrin[J]. Journal of the American Chemical Society, 2021, 143(4): 1984-1992. |
62 | Yin C C, Zhang Z, Si Z S, et al. Smart covalent organic frameworks with intrapore azobenzene groups for light-gated ion transport[J]. Chemistry of Materials, 2022, 34(20): 9212-9220. |
63 | Liu P Y, Tian Z Q, Chen L. Rational design of smart metal-organic frameworks for light-modulated gas transport[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32009-32017. |
64 | Zhou Z Y, Chen I C, Rehman L M, et al. Conjugated microporous polymer membranes for light-gated ion transport[J]. Science Advances, 2022, 8(24): eabo2929. |
65 | Jia W, Wu B H, Sun S T, et al. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration[J]. Nano Research, 2020, 13(11): 2973-2978. |
66 | Lin Y N, Xu Y L, Xing Y Z, et al. Three-dimensional ordered macroporous MOF-based smart gating membrane with size screening effect and aptamer specificity for highly efficient thrombin isolation[J]. Journal of Membrane Science, 2023, 665: 121132. |
67 | Zhou Y M, Xiong T Y, Lu J H, et al. Highly-efficient ion gating through self-assembled two-dimensional photothermal metal-organic framework membrane[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302997. |
68 | He A, Jiang Z W, Wu Y, et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving[J]. Nature Materials, 2022, 21(4): 463-470. |
69 | Zhai H J, Qu R X, Li X Y, et al. Crown ether modified membranes for Na+-responsive controllable emulsion separation suitable for hypersaline environments[J]. Journal of Materials Chemistry A, 2020, 8(5): 2684-2690. |
70 | Qian W J, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
71 | Lu J M, Yan F, Texter J. Advanced applications of ionic liquids in polymer science[J]. Progress in Polymer Science, 2009, 34(5): 431-448. |
72 | Guo J N, Qiu L H, Deng Z J, et al. Plastic reusable pH indicator strips: preparation via anion-exchange of poly(ionic liquids) with anionic dyes[J]. Polymer Chemistry, 2013, 4(5): 1309-1312. |
73 | Zhang Y Y, Deng X, Zhang L R, et al. Swelling poly(ionic liquid) supported by three-dimensional wire mesh for oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14347-14353. |
74 | Ou X, Ren Y Y, Guo J N, et al. ZIF-8@poly(ionic liquid)-grafted cotton cloth for switchable water/oil emulsion separation[J]. ACS Applied Polymer Materials, 2020, 2(8): 3433-3439. |
75 | Du L, Quan X, Fan X F, et al. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 210: 891-899. |
76 | Xu L, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie International Edition, 2005, 44(37): 6009-6012. |
77 | 任慧玲, 陆成海, 孙境求, 等. 聚吡咯电响应膜的油水分离及抗污染性能[J]. 环境工程学报, 2024, 18(5): 1373-1380. |
Ren H L, Lu C H, Sun J Q, et al. PPy electro-responsive membrane for oil/water separation and its anti-fouling performance[J]. Chinese Journal of Environmental Engineering, 2024, 18(5): 1373-1380. | |
78 | Wang Y, Liang R Z, Jia T Z, et al. Voltage-gated membranes incorporating cucurbit [n] uril molecular containers for molecular nanofiltration[J]. Journal of the American Chemical Society, 2022, 144(14): 6483-6492. |
79 | Liu X, Neoh K G, Kang E T. Redox-sensitive microporous membranes prepared from poly(vinylidene fluoride) grafted with viologen-containing polymer side chains[J]. Macromolecules, 2003, 36(22): 8361-8367. |
80 | Oughli A A, Vélez M, Birrell J A, et al. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential[J]. Dalton Transactions, 2018, 47(31): 10685-10691. |
81 | Liu L, Lan H C, Cui Y Q, et al. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification[J]. Science Advances, 2024, 10(21): eadn8696. |
82 | Cao L, Liu X W, Shinde D B, et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport[J]. Angewandte Chemie International Edition, 2022, 61(6): e202113141. |
83 | Cao L, Chen I C, Li Z, et al. Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane[J]. Nature Communications, 2022, 13(1): 7894. |
84 | Zhang F L, Fan J B, Wang S T. Interfacial polymerization: from chemistry to functional materials[J]. Angewandte Chemie International Edition, 2020, 59(49): 21840-21856. |
85 | Ren L, Chen J X, Han J, et al. Biomimetic construction of smart nanochannels in covalent organic framework membranes for efficient ion separation[J]. Chemical Engineering Journal, 2024, 482: 148907. |
86 | Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation[J]. Nature Nanotechnology, 2022, 17(9): 911-923. |
87 | Liu Y H, Li W, Yuan C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition, 2022, 61(2): e202113348. |
88 | Zhao M T, Huang Y, Peng Y W, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16): 6267-6295. |
89 | Xin Q P, Cao X T, Huang D D, et al. Smart light-responsive hierarchical metal organic frameworks constructed mixed matrix membranes for efficient gas separation[J]. Green Chemical Engineering, 2022, 3(1): 71-82. |
90 | Zhao H Y, Song T, Ding X L, et al. PIM-1 mixed matrix membranes incorporated with magnetic responsive cobalt-based ionic liquid for O2/N2 separation[J]. Journal of Membrane Science, 2023, 679: 121713. |
91 | Ying D Y, Zhang D Z, Peh S B, et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation[J]. Angewandte Chemie International Edition, 2021, 60(20): 11318-11325. |
92 | Deng Z, Wan T, Chen D K, et al. Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation[J]. Small, 2020, 16(34): 2002699. |
[1] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
[2] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
[3] | 何燎, 李俊, 高梦舒, 刘东阳, 张宇豪, 赵亮, 高金森, 徐春明. 石油烃中芳烃分离技术研究进展[J]. 化工学报, 2025, 76(5): 1909-1926. |
[4] | 徐泽海, 刘超, 张国亮. 聚合物基疏水渗透汽化膜及其溶剂回收应用[J]. 化工学报, 2025, 76(5): 2055-2069. |
[5] | 张耀辉, 班宇杰, 杨维慎. 以蒸气加工法制备和修饰金属-有机框架膜[J]. 化工学报, 2025, 76(5): 2070-2086. |
[6] | 杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942. |
[7] | 杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168. |
[8] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
[9] | 朱迪, 高守建, 方望熹, 靳健. 水蒸气诱导相分离构筑海绵孔结构超亲水聚醚砜膜及其油/水乳液分离性能研究[J]. 化工学报, 2025, 76(5): 2397-2409. |
[10] | 程刘惠美, 闫军营, 刘慧情, 王治澎, 王报英, 徐铜文, 汪耀明. 双极膜电渗析在醇水体系的应用研究进展[J]. 化工学报, 2025, 76(5): 1960-1972. |
[11] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
[12] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
[13] | 时任泽, 丁秋燕, 袁振军, 那健, 刘见华, 郭树虎, 赵雄, 李洪, 高鑫. 4N电子级二乙氧基甲基硅烷的纯化技术研究[J]. 化工学报, 2025, 76(5): 2186-2197. |
[14] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
[15] | 顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||