化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2733-2742.DOI: 10.11949/0438-1157.20241291
收稿日期:2024-11-13
修回日期:2024-12-19
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
王振雷
作者简介:吴与伦(2000—),男,硕士研究生,wyl_33@126.com
Yulun WU1(
), Zhenlei WANG1(
), Xin WANG2
Received:2024-11-13
Revised:2024-12-19
Online:2025-06-25
Published:2025-07-09
Contact:
Zhenlei WANG
摘要:
乙烯裂解炉是乙烯生产的核心装置,烃类原料在裂解炉中发生复杂的高温裂解反应,及时识别裂解炉运行工况变化对设备安全高效运行非常重要。裂解炉运行过程中产生大量的过程数据,这些数据通常具有多变量、高维度特性,增加了数据处理和分析的复杂性,如何基于过程数据及时检测乙烯裂解炉工况变化成为亟需解决的问题。借鉴对比学习算法在图片分类中的优秀性能,提出一类基于对比学习的裂解炉运行工况识别方法。首先,将乙烯裂解炉工业数据经归一化后,使用不同长度的时间窗动态提取数据,将其转化为灰度图片。根据图片中的信息,将图片进行数据增强后输入编码器,得到图片的全局语义、类别、内容不变性等特征。将这些特征应用于计算对比学习的损失函数,通过最小化对比损失函数,实现对灰度图片的分类。通过本文方法,可以根据过程数据快速发现工况变化,其分类准确度较通用时间序列表示学习的自监督对比学习(self-supervised contrastive learning for universal time series representation learning,TimesURL)方法有明显提升,可有效实现乙烯裂解炉工况识别。
中图分类号:
吴与伦, 王振雷, 王昕. 基于对比学习的乙烯裂解炉运行工况识别方法[J]. 化工学报, 2025, 76(6): 2733-2742.
Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace[J]. CIESC Journal, 2025, 76(6): 2733-2742.
| 算法伪代码 |
|---|
# z_p, z_n: 编码器网络 # m:动量系数 # t:温度系数 z_n.params = z_p.params # 初始化 for z in loader: # 对于样本大小为N,其中的元素z z_p = aug(z) # 一种随机数据增强 z_n = aug(z) # 另一种随机数据增强 p = z_p.forward(z_q) n = z_n.forward(z_n) k = k.detach() l_pos = bmm(p.view(N,1,C), n.view(N,C,1)) # 生成正样本 l_neg = mm(p.view(N,C), p.view(C,K)) # 生成负样本 logits = picture([l_pos, l_neg], dim=1) labels = zeros(N) loss = SoftmaxLoss(logits/t, labels) # 对比学习损失计算 loss.backward() update(z_p.params) z_n.params = m*z_n.params+(1-m)*z_p.params# 动量更新 |
表1 算法的伪代码
Table 1 Pseudo code for algorithms
| 算法伪代码 |
|---|
# z_p, z_n: 编码器网络 # m:动量系数 # t:温度系数 z_n.params = z_p.params # 初始化 for z in loader: # 对于样本大小为N,其中的元素z z_p = aug(z) # 一种随机数据增强 z_n = aug(z) # 另一种随机数据增强 p = z_p.forward(z_q) n = z_n.forward(z_n) k = k.detach() l_pos = bmm(p.view(N,1,C), n.view(N,C,1)) # 生成正样本 l_neg = mm(p.view(N,C), p.view(C,K)) # 生成负样本 logits = picture([l_pos, l_neg], dim=1) labels = zeros(N) loss = SoftmaxLoss(logits/t, labels) # 对比学习损失计算 loss.backward() update(z_p.params) z_n.params = m*z_n.params+(1-m)*z_p.params# 动量更新 |
| 参数 | 本文 | TimesURL |
|---|---|---|
| 模型架构 | ResNet-50 | TCN |
| 学习率 | 0.03 | 0.001 |
| 批量大小 | 256 | 16 |
| 动量系数 | 0.999 | 无 |
表2 参数对照表
Table 2 Parameter comparison table
| 参数 | 本文 | TimesURL |
|---|---|---|
| 模型架构 | ResNet-50 | TCN |
| 学习率 | 0.03 | 0.001 |
| 批量大小 | 256 | 16 |
| 动量系数 | 0.999 | 无 |
| 灰度图大小 | 本文方法的 准确率/% | 本文方法的测试准确率/% | TimesURL准确率/% |
|---|---|---|---|
| 16×16 | 92.5 | 76.5 | 61.5 |
| 24×24 | 94.0 | 79.2 |
表3 轴承数据集灰度图识别准确率
Table 3 Gray-scale image recognition accuracy of bearing data set
| 灰度图大小 | 本文方法的 准确率/% | 本文方法的测试准确率/% | TimesURL准确率/% |
|---|---|---|---|
| 16×16 | 92.5 | 76.5 | 61.5 |
| 24×24 | 94.0 | 79.2 |
| 灰度图大小 | 本文方法的准确率/% | 本文方法的测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 5×13 | 71.2 | 59.4 | 55.1 |
| 10×13 | 85.8 | 71.6 | |
| 20×13 | 90.3 | 79.1 | |
| 50×13 | 92.1 | 81.7 |
表4 乙烯裂解炉数据集1灰度图识别准确率
Table 4 Ethylene cracking furnace dataset 1 grayscale image recognition accuracy
| 灰度图大小 | 本文方法的准确率/% | 本文方法的测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 5×13 | 71.2 | 59.4 | 55.1 |
| 10×13 | 85.8 | 71.6 | |
| 20×13 | 90.3 | 79.1 | |
| 50×13 | 92.1 | 81.7 |
| 燃料燃烧效率范围 | 对应热效率等级 | 对应热效率含义 |
|---|---|---|
| (2.0, 3.02) | 1 | 低 |
| (3.02, 3.04) | 2 | 较低 |
| (3.04, 3.06) | 3 | 中等 |
| (3.06, 3.08) | 4 | 较高 |
| (3.08, 3.10) | 5 | 高 |
表5 燃料燃烧效率范围及含义
Table 5 Fuel combustion efficiency range and their meanings
| 燃料燃烧效率范围 | 对应热效率等级 | 对应热效率含义 |
|---|---|---|
| (2.0, 3.02) | 1 | 低 |
| (3.02, 3.04) | 2 | 较低 |
| (3.04, 3.06) | 3 | 中等 |
| (3.06, 3.08) | 4 | 较高 |
| (3.08, 3.10) | 5 | 高 |
| 灰度图大小 | 本文方法的准确率/% | 本文方法的 测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 3×17 | 91.5 | 75.6 | 66.2 |
表6 乙烯裂解炉数据集2灰度图识别准确率
Table 6 Ethylene cracking furnace dataset 2 grayscale image recognition accuracy
| 灰度图大小 | 本文方法的准确率/% | 本文方法的 测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 3×17 | 91.5 | 75.6 | 66.2 |
| 数据集类型 | 灰度图大小 | 本文方法的 准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 轴承数据集 | 16×16 | 92.5 | 61.5 |
| 24×24 | 94.0 | ||
| 裂解炉燃烧数据集1 | 5×13 | 71.2 | 55.1 |
| 10×13 | 85.8 | ||
| 20×13 | 90.3 | ||
| 50×13 | 92.1 | ||
| 裂解炉燃烧数据集2 | 3×17 | 91.5 | 66.2 |
表7 实验结果
Table 7 Experimental results
| 数据集类型 | 灰度图大小 | 本文方法的 准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 轴承数据集 | 16×16 | 92.5 | 61.5 |
| 24×24 | 94.0 | ||
| 裂解炉燃烧数据集1 | 5×13 | 71.2 | 55.1 |
| 10×13 | 85.8 | ||
| 20×13 | 90.3 | ||
| 50×13 | 92.1 | ||
| 裂解炉燃烧数据集2 | 3×17 | 91.5 | 66.2 |
| [1] | Deng J L, Chen G R. Research on online fault diagnosis model based on IoT in process industry[J]. Advanced Materials Research, 2013, 765/766/767: 2089-2092. |
| [2] | 刘宇航. 基于主成分分析的故障监测方法及其应用研究[D]. 上海: 华东理工大学, 2012. |
| Liu Y H. Research on fault monitoring method based on principal component analysis and its application[D]. Shanghai: East China University of Science and Technology, 2012. | |
| [3] | 常亚娜, 武锦涛, 代玉强. 数据分析与BP神经网络相结合的乙烯装置智能故障诊断系统[J]. 石油炼制与化工, 2023, 54(6): 97-104. |
| Chang Y N, Wu J T, Dai Y Q. Research on intelligent fault diagnosis system of ethylene plant based on data analysis and bp neural network[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 97-104. | |
| [4] | 吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8): 1015-1022. |
| Wu J B, Zeng G H, Zhang Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable Energy Resources, 2023, 41(8): 1015-1022. | |
| [5] | 刘星宇, 宋韶旭, 黄向东, 等. Apache TsFile中的短时间序列分组压缩及合并方法[J]. 软件学报, 2025, 36(3): 941-961. |
| Liu X Y, Song S X, Huang X D, et al. Short time series group compression and merging method in Apache TsFile[J]. Journal of Software, 2025, 36(3): 941-961. | |
| [6] | 程翔. 基于机器学习的滚动轴承故障诊断研究[D]. 淮南: 安徽理工大学, 2024. |
| Cheng X. Research on fault diagnosis of rolling bearing based on machine learning[D]. Huainan: Anhui University of Science & Technology, 2024. | |
| [7] | 徐娇. 基于时间序列的高精度外测数据预处理方法研究[D]. 西安: 西安理工大学, 2022. |
| Xu J. Research on high precision external measurement data preprocessing method based on time series[D]. Xi'an: Xi'an University of Technology, 2022. | |
| [8] | 李娟, 赵友刚, 于洋, 等. 含大时滞和噪声的网络化控制系统的最优故障诊断[J]. 自动化学报, 2012, 38(5): 858-864. |
| Li J, Zhao Y G, Yu Y, et al. Optimal fault diagnosis for networked control systems with large time-delays and noises[J]. Acta Automatica Sinica, 2012, 38(5): 858-864. | |
| [9] | 赵凯阳. 基于改进主元分析的微小故障诊断方法研究[D]. 西安: 西安工业大学, 2024. |
| Zhao K Y. Research on micro-fault diagnosis method based on improved principal component analysis[D]. Xi'an: Xi'an Technological University, 2024. | |
| [10] | 刘晰宇. 乙烯精馏塔预测控制技术及其应用研究[D]. 大庆: 东北石油大学, 2023. |
| Liu X Y. Predictive control technology of ethylene distillation column and its application[D]. Daqing: Northeast Petroleum University, 2023. | |
| [11] | 陈德坤. 大型乙烯裂解炉烧焦过程中COT随机分布系统建模与控制研究[D]. 北京: 北京化工大学, 2021. |
| Chen D K. Study on modeling and control of COT random distribution system during coking of large ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| [12] | 于静, 金秀章. 基于RBF神经网络的PFC-PID主汽温串级预测控制[J]. 华北电力大学学报(自然科学版), 2020, 47(6): 91-98. |
| Yu J, Jin X Z. PFC-PID main steam temperature cascade predictive control based on RBF neural network[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(6): 91-98. | |
| [13] | 韩先尧, 王宁, 申青蓉, 等. 基于累计T 2贡献值的乙烯裂解炉故障诊断分析[J]. 控制工程, 2021, 28(10): 1917-1922. |
| Han X Y, Wang N, Shen Q R, et al. Fault diagnosis analysis of ethylene cracking furnace based on accumulated T 2 contribution value[J]. Control Engineering of China, 2021, 28(10): 1917-1922. | |
| [14] | Li G, Ba Z G, Zhang H Z. Expert system of fault diagnosis for flight simulator based on fault tree analysis[J]. Advanced Materials Research, 2014, 1055: 371-374. |
| [15] | 李长青, 张德龙, 董泽. 主汽温系统线性自抗扰优化控制[J]. 计算机仿真, 2018, 35(8): 81-86. |
| Li C Q, Zhang D L, Dong Z. Optimized linear active disturbance rejection controller design for main steam temperature systems[J]. Computer Simulation, 2018, 35(8): 81-86. | |
| [16] | Lu Y S, Wang F L, Jia M X, et al. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters[J]. Mechanical Systems and Signal Processing, 2016, 81: 259-273. |
| [17] | 任佳, 师琪, 陈晓, 等. 数据驱动的化工过程故障诊断方法综述[C]//第35届中国过程控制会议论文集. 2024. |
| Ren J, Shi Q, Chen X, et al. Review on data-driven based fault detection and diagnosis approaches for chemical industrial process[C]//Proceedings of the 35th China Process Control Conference. 2024. | |
| [18] | 崔潇艺. 基于深度学习的化工过程故障诊断算法研究[D]. 长春: 长春工业大学, 2024. |
| Cui X Y. Research on fault diagnosis algorithm of chemical process based on deep learning[D]. Changchun: Changchun University of Technology, 2024. | |
| [19] | Bachman P, Hjelm R D, Buchwalter W. Learning representations by maximizing mutual information across views[EB/OL]. . |
| [20] | 吕巧莉. 基于自监督对比学习的图像分类算法研究[D]. 保定: 河北大学, 2024. |
| Lyu Q L. Research on image classification algorithm based on self-supervised contrastive learning[D]. Baoding: Hebei University, 2024. | |
| [21] | Tian Y L, Krishnan D, Isola P. Contrastive multiview coding[M]//Vedaldi A, Bischof H, Brox T, et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 776-794. |
| [22] | 李希, 刘喜平, 李旺才, 等. 对比学习研究综述[J]. 小型微型计算机系统, 2023, 44(4): 787-797. |
| Li X, Liu X P, Li W C, et al. Survey on contrastive learning research[J]. Journal of Chinese Computer Systems, 2023, 44(4): 787-797. | |
| [23] | 张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39. |
| Zhang C S, Chen J, Li Q L, et al. Deep contrastive learning: a survey[J]. Acta Automatica Sinica, 2023, 49(1): 15-39. | |
| [24] | He K M, Fan H Q, Wu Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 9726-9735. |
| [25] | Hadsell R, Chopra S, LeCun Y. Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA: IEEE, 2006: 1735-1742. |
| [26] | Wu Z R, Xiong Y J, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3733-3742. |
| [27] | Dosovitskiy A, Springenberg J T, Riedmiller M, et al. Discriminative unsupervised feature learning with convolutional neural networks[J/OL]. . |
| [28] | Gutmann M, Hyvärinen A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010: 297-304. |
| [29] | Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding[J/OL]. . |
| [30] | Pathak D, Krähenbühl P, Donahue J, et al. Context encoders: feature learning by inpainting[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2536-2544. |
| [31] | 李三仟. 基于多视觉特征和卷积神经网络先验信息的图像复原[D]. 南昌: 南昌大学, 2019. |
| Li S Q. Image restoration based on multi-visual features and prior information of convolutional neural network[D]. Nanchang: Nanchang University, 2019. | |
| [32] | Zhang R, Isola P, Efros A A. Colorful image colorization[M]//Leibe B, Matas J, Sebe N, et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 649-666. |
| [33] | Tao C X, Wang H H, Zhu X Z, et al. Exploring the equivalence of Siamese self-supervised learning via a unified gradient framework[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, 2022: 14411-14420. |
| [34] | Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International Conference on Machine Learning. PMLR, 2020: 1597-1607. |
| [35] | Meybodi Z H, Mohammadi A, Abouei J, et al. CoPo: self-supervised contrastive learning for popularity prediction in MEC networks[C]//2023 24th International Conference on Digital Signal Processing (DSP). Rhodes (Rodos), Greece: IEEE, 2023: 1-5. |
| [36] | Nguyen T, Pham T X, Zhang C N, et al. DimCL: dimensional contrastive learning for improving self-supervised learning[J]. IEEE Access, 2023, 11: 21534-21545. |
| [37] | Li Y F, Hu P, Liu Z T, et al. Contrastive clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8547-8555. |
| [38] | Liu J X, Chen S C. TimesURL: self-supervised contrastive learning for universal time series representation learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(12): 13918-13926. |
| [1] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [2] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [3] | 李琳, 王明媚, 宋二伟, 王雯雯, 张耀昌, 王二强. 异戊二烯-正戊烷分离工艺的热力学分析及优化[J]. 化工学报, 2025, 76(6): 2549-2558. |
| [4] | 蒋敏, 邵翔宇, 郑立刚, 高建良, 雷刚. 膜片压力对氢-空气混合气体泄爆过程的影响[J]. 化工学报, 2025, 76(6): 2770-2780. |
| [5] | 李文亮, 纪成, 梁晨, 吴思辰, 陈石林, 孙巍, 翟持. 基于TDMN的青霉素浓度在线软测量[J]. 化工学报, 2025, 76(6): 2848-2858. |
| [6] | 王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114. |
| [7] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [8] | 李欣怡, 王功明, 王自鹏, 乔俊飞. 基于事件触发的污水处理过程水质智能预测研究[J]. 化工学报, 2025, 76(6): 2828-2837. |
| [9] | 张京新, 何皎洁, 蔡庆旺, 康子怡, 杨玉思, 王彤, 曹仙桃, 杨利伟. 基于二次分解和BiLSTM的污水厂出水COD浓度预测[J]. 化工学报, 2025, 76(6): 2859-2871. |
| [10] | 安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025. |
| [11] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [12] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [13] | 徐芳萍, 杨辉, 陈俊, 朱建勇, 陆荣秀. 基于迁移学习与残差注意力卷积网络的稀土元素组分含量软测量[J]. 化工学报, 2025, 76(4): 1647-1660. |
| [14] | 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679. |
| [15] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号