化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3416-3425.DOI: 10.11949/0438-1157.20241379

• 智能过程工程 • 上一篇    下一篇

基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法

王芳1,2,3(), 马素霞1(), 田营4, 刘众元5   

  1. 1.太原理工大学电气与动力工程学院,山西 太原 030024
    2.太原锅炉集团有限公司,山西 太原 030024
    3.高效储热与 低碳供热山西省重点实验室,山西 太原 030008
    4.国电电力大同发电有限责任公司,山西 大同 037003
    5.国网山西省电力公司电力科学研究院,山西 太原 030001
  • 收稿日期:2024-11-28 修回日期:2024-12-29 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 马素霞
  • 作者简介:王芳(1989—),女,博士,讲师,wangfang05@tyut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61973226);山西省自然科学基金项目(20240302123189)

NO x emission prediction method of CFB unit based on 1D mechanism model dynamicly corrected with LSTM

Fang WANG1,2,3(), Suxia MA1(), Ying TIAN4, Zhongyuan LIU5   

  1. 1.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Taiyuan Boiler Group Corporation Limited, Taiyuan 030024, Shanxi, China
    3.Shanxi Provincial Key Laboratory of High Efficiency Heat Storage and Low Carbon Heat Supply, Taiyuan 030008, Shanxi, China
    4.GD Power Datong Power Generation Corporation Limited, Datong 037003, Shanxi, China
    5.State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, Shanxi, China
  • Received:2024-11-28 Revised:2024-12-29 Online:2025-07-25 Published:2025-08-13
  • Contact: Suxia MA

摘要:

CFB机组NO x 排放浓度实时监测方法的不足主要表现在:基于机理模型的NO x 排放浓度预测方法在某些不同于其建模条件的工况下,预测误差较大;基于机器学习模型的方法预测精度高,但缺乏物理意义,可解释性差。为此,提出一种CFB机组NO x 排放浓度预测融合模型,首先构建一维循环流化床整体半经验模型模拟炉内燃烧给出NO x 排放浓度初始预测值,其次基于长短期记忆人工神经网络构建误差校正模型,对初始预测值进行动态修正。以两台CFB机组为研究对象,结果表明,提出的模型优于单一的一维半经验模型以及长短期记忆网络、BP神经网络等模型。机理与机器学习方法的结合使得融合模型既具备高的预测精度,又具有良好的可解释性。

关键词: 循环流化床, 动态建模, 测量, NO x 排放浓度, LSTM神经网络

Abstract:

The current monitoring methods for NO x emission concentration of CFB unit still have some shortcomings. Mechanism based NO x emission concentration prediction methods may have large prediction errors under certain operating conditions different from the modeling conditions. Machine learning based methods have high prediction accuracy, but lack physical significance and have poor interpretability. To this end, a fusion model for predicting NO x emission concentration of CFB unit is proposed. Firstly, a one-dimensional circulating fluidized bed overall semi-empirical model is constructed to simulate the combustion in the furnace to give the initial prediction value of NO x emission concentration. Secondly, an error correction model is constructed based on the long short-term memory artificial neural network to dynamically correct the initial prediction value. Taking two CFB units as research objects, the results show that the proposed model is superior to the single one-dimensional semi empirical model, as well as models such as long short-term memory network and BP neural network. The combination of mechanism and machine learning methods enables the fusion model to have both high prediction accuracy and good interpretability.

Key words: circulating fluidized bed, dynamic modeling, measurement, NO x emission concentration, LSTM neural network

中图分类号: