| [1] |
Wang X W, Liu W J, Wang Y N, et al. A hybrid NO x emission prediction model based on CEEMDAN and AM-LSTM[J]. Fuel, 2022, 310: 122486.
|
| [2] |
Adams D, Oh D H, Kim D W, et al. Prediction of SO x -NO x emission from a coal-fired CFB power plant with machine learning: plant data learned by deep neural network and least square support vector machine[J]. Journal of Cleaner Production, 2020, 270: 122310.
|
| [3] |
Tan P, He B, Zhang C, et al. Dynamic modeling of NO x emission in a 660 MW coal-fired boiler with long short-term memory[J]. Energy, 2019, 176: 429-436.
|
| [4] |
Yang G T, Wang Y N, Li X L. Prediction of the NO x emissions from thermal power plant using long-short term memory neural network[J]. Energy, 2020, 192: 116597.
|
| [5] |
任少君, 朱保宇, 翁琪航, 等. 基于物理信息神经网络的燃煤锅炉NO x 排放浓度预测方法[J]. 中国电机工程学报, 2024, 44(20): 8157-8166.
|
|
Ren S J, Zhu B Y, Weng Q H, et al. Forecasting method for NO x emission in coal fired boiler based on physics-informed neural network[J]. Proceedings of the CSEE, 2024, 44(20): 8157-8165.
|
| [6] |
Azodi C B, Tang J L, Shiu S H. Opening the black box: interpretable machine learning for geneticists[J]. Trends in Genetics, 2020, 36(6): 442-455.
|
| [7] |
赵小军, 王学斌, 孙锦余, 等. 300MW电站煤粉锅炉耦合掺烧生物质的CFD数值模拟[J]. 洁净煤技术, 2022, 28(3): 56-64.
|
|
Zhao X J, Wang X B, Sun J Y, et al. Numerical simulation of biomass coupled by pulverized coal boiler in 300MW power station[J]. Clean Coal Technology, 2022, 28(3): 56-64.
|
| [8] |
李佳伟, 陈智超, 张旭阳, 等. 预燃室燃烧器煤气化细灰混烧特性和数值模拟研究[J]. 工程热物理学报, 2022, 43(6): 1675-1683.
|
|
Li J W, Chen Z C, Zhang X Y, et al. Study on co-combustion characteristics and numerical simulation of coal gasification fine ash in precombustion chamber burner[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1675-1683.
|
| [9] |
Wang S, Luo K, Yang S L, et al. LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB[J]. Chemical Engineering Journal, 2017, 313: 858-872.
|
| [10] |
Tu Q Y, Wang H G, Ocone R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors—a review[J]. Powder Technology, 2022, 399: 117181.
|
| [11] |
Muhammad A, Zhang N, Wang W. CFD simulations of a full-loop CFB reactor using coarse-grained Eulerian-Lagrangian dense discrete phase model: effects of modeling parameters[J]. Powder Technology, 2019, 354: 615-629.
|
| [12] |
Bandara J C, Jayarathna C, Thapa R, et al. Loop seals in circulating fluidized beds—review and parametric studies using CPFD simulation[J]. Chemical Engineering Science, 2020, 227: 115917.
|
| [13] |
Li S Y, Shen Y S. Multi-fluid modelling of hydrodynamics in a dual circulating fluidized bed[J]. Advanced Powder Technology, 2020, 31(7): 2778-2791.
|
| [14] |
Ke X W, Engblom M, Yang H R, et al. Prediction and minimization of NO x emission in a circulating fluidized bed combustor: a comprehensive mathematical model for CFB combustion[J]. Fuel, 2022, 309: 122133.
|
| [15] |
马达夫, 何翔, 吕为智, 等. 660 MW超临界W火焰锅炉低负荷稳燃特性研究[J]. 工程热物理学报, 2022, 43(1): 259-266.
|
|
Ma D F, He X, Lyu W Z, et al. Investigations of combustion stability in a 660 MW supercritical W-flame boiler under low load[J]. Journal of Engineering Thermophysics, 2022, 43(1): 259-266.
|
| [16] |
李政. 循环流化床锅炉通用整体数学模型、仿真与性能预测[D]. 北京: 清华大学, 1994.
|
|
Li Z. Modeling, simulation and performance prediction of a complete CFB boiler[D]. Beijing: Tsinghua University, 1994.
|
| [17] |
高明明, 岳光溪, 雷秀坚, 等. 循环流化床锅炉石灰石控制研究[J]. 动力工程学报, 2014, 34(10): 759-764, 777.
|
|
Gao M M, Yue G X, Lei X J, et al. Research on limestone control of circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering, 2014, 34(10): 759-764, 777.
|
| [18] |
单露, 张缦, 张翼, 等. 循环流化床全回路气固流动动态模型及分析[J]. 中国电机工程学报, 2017, 37(S1): 98-104.
|
|
Shan L, Zhang M, Zhang Y, et al. Dynamic model establishment and analysis on gas-solid flow in CFB whole loop[J]. Proceedings of the CSEE, 2017, 37(S1): 98-104.
|
| [19] |
Yan J, Lu X F, Wang Q H, et al. Study on the influence of secondary air on the distributions of flue gas composition at the lower part of a 600 MW supercritical CFB boiler[J]. Fuel Processing Technology, 2019, 196: 106035.
|
| [20] |
Kunii D. Flow modeling of fast fluidized beds[M]// Circulating Fluidized Bed Technology. 3rd ed. New York: Pergamon Press, 1991: 91-98.
|
| [21] |
Pallarès D, Johnsson F. Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds[J]. Progress in Energy and Combustion Science, 2006, 32(5/6): 539-569.
|
| [22] |
Yang H R, Yue G X, Xiao X B, et al. 1D modeling on the material balance in CFB boiler[J]. Chemical Engineering Science, 2005, 60(20): 5603-5611.
|
| [23] |
Nikolopoulos A, Malgarinos I, Nikolopoulos N, et al. A decoupled approach for NO x -N2O 3-D CFD modeling in CFB plants[J]. Fuel, 2014, 115: 401-415.
|
| [24] |
Desroches-Ducarne E, Dolignier J C, Marty E, et al. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel, 1998, 77(13): 1399-1410.
|
| [25] |
Kilpinen P, Kallio S, Konttinen J, et al. Char-nitrogen oxidation under fluidised bed combustion conditions: single particle studies[J]. Fuel, 2002, 81(18): 2349-2362.
|
| [26] |
Pan Q Q, Zheng S C, Liu X J. Deep-coupling neural network and genetic algorithm based on Sobol-PR for reactor lightweight optimization[J]. Applied Soft Computing, 2024, 167: 112458.
|
| [27] |
闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418.
|
|
Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418.
|
| [28] |
张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204.
|
|
Zhang Z Q, Li H G, Shi Y L. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies[J]. CIESC Journal, 2023, 74(3): 1195-1204.
|
| [29] |
Knöbig T, Werther J, L-E Å, et al. Comparison of large- and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels[J]. Fuel, 1998, 77(14): 1635-1642.
|
| [30] |
颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
|
|
Yan J G, Zheng S M, Guo P C, et al. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657.
|
| [31] |
代学志, 熊伟丽. 基于核极限学习机的快速主动学习方法及其软测量应用[J]. 化工学报, 2020, 71(11): 5226-5236.
|
|
Dai X Z, Xiong W L. A fast active learning method based on kernel extreme learning machine and its application for soft sensing[J]. CIESC Journal, 2020, 71(11): 5226-5236.
|