CIESC Journal ›› 2014, Vol. 65 ›› Issue (1): 12-21.DOI: 10.3969/j.issn.0438-1157.2014.01.002
陈健, 罗伟亮, 李晗
收稿日期:
2013-07-01
修回日期:
2013-10-08
出版日期:
2014-01-05
发布日期:
2014-01-05
通讯作者:
陈健
作者简介:
陈健(1965-),男,教授。
基金资助:
CHEN Jian, LUO Weiliang, LI Han
Received:
2013-07-01
Revised:
2013-10-08
Online:
2014-01-05
Published:
2014-01-05
Supported by:
摘要: 二氧化碳捕集与封存技术(CCS)是针对大气CO2含量增高导致的全球气候变暖而提出的全球性解决方案。有机胺吸收法作为经济与技术层面最成熟的技术,是实现二氧化碳捕集的重要工艺过程。从有机胺法吸收二氧化碳的基本反应机理出发,系统评述了应用有机胺法吸收捕集CO2的热力学与动力学性质的研究进展,介绍了不同类型胺溶剂分子结构与CO2捕集溶解度和反应速度的关系,并对今后CO2吸收捕集的热力学和动力学的研究方向提出了展望。
中图分类号:
陈健, 罗伟亮, 李晗. 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. CIESC Journal, 2014, 65(1): 12-21.
CHEN Jian, LUO Weiliang, LI Han. A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. , 2014, 65(1): 12-21.
[1] | Keith D W. Why capture CO2 from the atmosphere?[J]. Science, 2009, 325(5948): 1654-1655 |
[2] | Intergovernment Panel on Climate Change. IPCC Fourth Assessment Report[M]. Cambridge: Cambridge University Press, 2007 |
[3] | Department of Energy. Carbon Sequestration Research and Development[M]. 1999 |
[4] | International Energy Agency. CO2 Emissions from Fuel Combusion Highlights[M]. 2009 |
[5] | Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Advances in CO2 capture technology—the U.S. Department of Energy's Carbon Sequestration Program[J]. Int. J. Greenhouse Gas Control, 2008, 2(1): 9-20 |
[6] | CCP. Annual Report 2012. CO2 Capture Project[M]. 2013 |
[7] | Barry H. IEA Report-Carbon Dioxide Capture from Power Stations[M]. 2001 |
[8] | Fei Weiyang(费维扬), Ai Ning(艾宁), Chen Jian(陈健).Capture and separation of greenhouse gases CO2 — the challenge and opportunity for separation technology[J]. Chem. Ind. & Eng. Prog. (化工进展), 2005, 24(1): 1-8. |
[9] | Edwards T J, Maurer G, Newman J, Prausnitz J M. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes[J]. AIChE J., 1978, 24(6): 966-976 |
[10] | Bates R G, Pinching G D. Acidic dissociation constant and related thermodynamic qantities for monoethanolammonium ion in water from 0 to 50℃[J]. J. Res. Natl. Bur. Stand., 1951, 46 (5): 349-352 |
[11] | Austgen D M. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems[D]. TX: University of Texas at Austin, 1989 |
[12] | Ma'mun S, Svendsen H F, Hoff K A, Juliussen O. Selection of new absorbents for carbon dioxide capture[J]. Ener. Con. Man., 2007, 48(1): 251-258 |
[13] | Jenab M H, Abdi M A, Najibi S H, Vahidi M, Matin N S. Solubility of carbon dioxide in aqueous mixtures of N-methyldiethanolamine + piperazine + sulfolane[J]. J. Chem. Eng. Data, 2005, 50(2):583-586. |
[14] | Chen J, Dong L, Gao G. The solubility of CO2 in aqueous solutions of 3-amino-1-propanol[J]. J. Chem. Eng. Data, 2010, 55(2): 1030-1034 |
[15] | Lee J I, Frederick D O, Mather A E. Equilibrium between carbon dioxide and aqueous monoethanolamine solutions[J]. J. Appl. Chem. Biotechnol., 1976, 26(10): 541-546. |
[16] | Jou F Y, Mather A E, Otto F D. The solubility of CO2 in a 30 mass percent monoethanolamine solution[J]. Can. J. Chem. Eng., 1995, 73(1): 140-147. |
[17] | Ma'mum S, Nilsen R, Svendsen H F. Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass% methyldiethanolamine solutions[J]. J. Chem. Eng. Data, 2005, 50(2): 630-634 |
[18] | Lawson J D, Garst A W. Gas sweetening data: equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous monoethanolamine and aqueous diethanolamine solutions[J]. J. Chem. Eng. Data, 1976, 21(1): 20-30 |
[19] | Martin J L, Otto F D, Mather A E. Solubility of hydrogen sulfide and carbon dioxide in a diglycolamine solution[J]. J. Chem. Eng. Data, 1978, 23(2): 163-164 |
[20] | Isaacs E E, Otto F D, Mather A E. Solubility of mixtures of carbon dioxide and hydrogen sulphide in an aqueous DIPA solution[J]. Can. J. Chem. Eng., 1977, 55(2): 210-212 |
[21] | Jou F Y, Carroll J J, Mather A E, Otto F D. Solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyl-diethanolamine[J]. Can. J. Chem. Eng., 1993, 71(2): 264-268 |
[22] | Kuranov G, Rumpf B, Smirnova N A, Maurer G. Solubility of single gas carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313—413 K at pressures up to 5 MPa[J]. Ind. Eng. Chem. Res., 1996, 35(6): 1959-1966 |
[23] | Rochelle G T, Goff G S, Cullinane J T. Research needs for CO2 capture from flue gas by aqueous absorption/stripping//Laurance Reid Gas Conditioning Conference[C]. Oklahoma City, OK, USA, 2002 |
[24] | Chakraborty A K, Astarita G, Bischoff K B. CO2 absorption in aqueous solutions of hindered amines[J]. Chem. Eng. Sci., 1986, 41(4): 997-1003 |
[25] | Sartori G, Savage D W. Sterically hindered amines for CO2 removal from gases[J]. Ind. Eng. Chem. Fundam., 1983, 22(2): 239-249 |
[26] | Singh P, Niederer J P M, Versteeg G F. Structure and activity relationships for amine based CO2 absorbents[J]. Int. J. Greenhouse Gas Control, 2007, 1(1): 5-10 |
[27] | Tontlwachwuthlkul P, Melsen A, Llm C J. Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions[J]. J. Chem. Eng. Data, 1991, 36(1): 130-133 |
[28] | Baek J I, Yoon J H. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1, 3-propanediol[J]. J. Chem. Eng. Data, 1998, 43(4): 635-637 |
[29] | Park J Y, Yoon S J, Lee H, Yoon J H, Shim J G, Lee J K, Min B Y, Eum H M, Kang M C. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1, 3-propanediol[J]. Fluid Phase Equili., 2002, 202(2): 359-366 |
[30] | Bishnoi S, Rochelle G T. Absorption of carbon dioxide into aqueous piperazine:reaction kinetics, mass transfer and solubility[J]. Chem. Eng. Sci., 2000, 55(22): 5531-5543 |
[31] | Kadiwala S, Rayer A V, Henni A. High pressure solubility of carbon dioxide (CO2) in aqueous piperazine solutions[J]. Fluid Phase Equili., 2010, 292(1/2): 20-28 |
[32] | Ma'mun S, Jakobsen J P, Svendsen H F, Juliussen O. Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-((2-aminoethyl)amino)ethanol solution[J]. Ind. Eng. Chem. Res., 2006, 45(8): 2505-2512 |
[33] | Singh P, Versteeg G F. Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents[J]. Pro. Saf. Env. Pro., 2008, 86(5): 347-359 |
[34] | Liu Y X, Dong L H, Mi J G, Chen J. Study on molecular structure of alkanolamines and their CO2 capture ability[J]. S S:Chimica, 2012, 42(3): 291-296 |
[35] | Li M H, Shen K P. Densities and solubilities of solutions of carbon dioxide in water + monoethanolamine + N-methyldiethanolamine[J]. J. Chem. Eng. Data, 1992, 37(3): 288-290 |
[36] | Shen K P, Li M H. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine[J]. J. Chem. Eng. Data, 1992, 37(1): 96-100 |
[37] | Li M H, Chang B C. Solubility of mixtures of carbon dioxide and hydrogen sulfide in water + monoethanolamine + 2-amino-2-methyl-1-propanol[J]. J. Chem. Eng. Data, 1995, 40(1): 328-331 |
[38] | Seo D J, Hong W H. Solubilities of carbon dioxide in aqueous mixtures of diethanolamine and 2-amino-2-methyl-1-propanol[J]. J. Chem. Eng. Data, 1996, 41(2): 258-260 |
[39] | Jane I S, Li M H. Solubilities of mixtures of carbon dioxide and hydrogen sulfide in water + diethanolamine + 2-amino-2-methyl-1-propanol[J]. J. Chem. Eng. Data, 1997, 42(1): 98-105 |
[40] | Dash S K, Samanta A N, Bandyopadhyay S S. Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine[J]. J. Chem. Thermo., 2012, 51(1): 120-125 |
[41] | Derks P W J, Hogendoorn J A, Versteeg G F. Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine[J]. J. Chem. Thermo., 2010, 42(1): 151-163 |
[42] | Speyer D, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region[J]. J. Chem. Eng. Data, 2010, 55(1): 283-290 |
[43] | Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine:prediction and correlation[J]. Fluid Phase Equili., 2011, 302(1/2): 338-346 |
[44] | Silkenbäumer D, Rumpf B, Lichtenthaler R N. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine and their mixtures in the temperature range from 313 to 353 K and pressures up to 2.7 MPa[J]. Ind. Eng. Chem. Res., 1998, 37(8): 3133-3141 |
[45] | Guo C, Chen S, Zhang Y. Solubility of carbon dioxide in aqueous 2-(2-aminoethylamine)ethanol (AEEA) solution and its mixtures with N-methyldiethanolamine/2-amino-2-methyl-1-propanol[J]. J. Chem. Eng. Data, 2013, 58(2): 460-466 |
[46] | Song H J, Lee S, Maken S, Park J J, Park J W. Solubilities of carbon dioxide in aqueous solutions of sodium glycinate[J]. Fluid Phase Equili., 2006, 246(1/2): 1-5 |
[47] | Portugal A F, Sousa J M, Magalhães F D, Mendes A. Solubility of carbon dioxide in aqueous solutions of amino acid salts[J]. Chem. Eng. Sci., 2009, 64(9): 1993-2002 |
[48] | Mathonat C, Majer V, Mather A E, Grolier J P E. Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions[J]. Ind. Eng. Chem. Res., 1998, 37(10): 4136-4141 |
[49] | Arcis H, Ballerat-Busserolles K, Rodier L, Coxam J Y. Measurement and modeling of enthalpy of solution of carbon dioxide in aqueous solutions of diethanolamine at temperatures of (322.5 and 372.9) K and pressures up to 3 MPa[J]. J. Chem. Eng. Data, 2012, 57(3): 840-855 |
[50] | Mathonat C, Majer V, Mather A E, Grolier J P E. Enthalpies of absorption and solubility of CO2 in aqueous solutions of methyldiethanolamine[J]. Fluid Phase Equilib., 1997, 140(1/2): 171-82 |
[51] | Arcis H, Ballerat-Busserolles K, Rodier L, Coxam J Y. Enthalpy of solution of carbon dioxide in aqueous solutions of triethanolamine at temperatures of 322.5 K and 372.9 K and pressures up to 5 MPa[J]. J. Chem. Eng. Data, 2012, 57(12): 3587-3597 |
[52] | Arcis H, Rodier L, Coxam J Y. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol[J]. J. Chem. Thermo-dynamics, 2007, 39(6): 878-87 |
[53] | Chen J, Mi J G , Liu J C. Calculation of gas solubility in the system MDEA-H2O-CO2-H2S[J]. Nat. Gas Chem. Eng., 2001, 26(3): 57-61 |
[54] | Kent R L, Eisenberg B. Better data for amine treating[J]. Hydro. Pro., 1976, 55(2): 87-90 |
[55] | Clegg S L, Pitzer K S. Thermodynamics of multicomponent, miscible, ionic solutions. Generalized equations for symmetrical electrolytes[J]. J. Phys. Chem., 1992, 96(8): 3513-3519 |
[56] | Chen C C, Britt H I, Boston J F, Evans L B. Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes[J]. AIChE J., 1979, 25(5): 820-831 |
[57] | Rousseau RW, Boone J E. Vapor-liquid equilibrium for salt containing systems: correlation of binary solvent data and prediction of behavior in multicomponent solvents[J]. AIChE J., 1978, 24(4): 718-725 |
[58] | Li Y G, Mather A E. Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution[J]. Ind. Eng. Chem. Res., 1994, 33(8): 2006-2015 |
[59] | Li Y G, Mather A E. Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of methyldiethanolamine[J]. Ind. Eng. Chem. Res., 1997, 36(7): 2760-2765 |
[60] | Zheng Y, Guo D, Dong L, Chen J. Simulation and pilot plant measurement for CO2 absorption with mixed amines[J]. Energy Procedia, 2011, 4: 299-306 |
[61] | Bishnoi S, Rochelle G T. Thermodynamics of piperazine/ methyldiethanolamine/water/carbon dioxide[J]. Ind. Eng. Chem. Res., 2002, 41(3): 604-612 |
[62] | Austgen D M, Rochelle G T, Chen C C. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems(Ⅱ): Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA[J]. Ind. Eng. Chem. Res., 1991, 30(3): 543-555 |
[63] | Al-Rashed O A, Ali S H. Modeling the solubility of CO2 and H2S in DEA-MDEA alkanolamine solutions using the electrolyte-UNIQUAC model[J]. Sep. Pur. Techno., 2012, 94: 71-83 |
[64] | Aronu U E, Gondal S, Hessen E T, Haug-Warberg T, Hartono A, Hoff K A, Svendsen H F. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120℃ and model representation using the extended UNIQUAC framework[J]. Chem. Eng. Sci., 2011, 66(24): 6393-6406 |
[65] | Zheng Que(郑碏), Dong Lihu(董立户), Chen Jian(陈健), Gao Guanghua(高光华), Fei Weiyang(费维扬). Study on absorption solubility calculation and process simulation for CO2 capture[J]. CIESC Journal(化工学报). 2010, 61(7): 1740-1746 |
[66] | Caplow M. Kinetics of carbamate formation and breakdown[J]. J. Am. Chem. Sci., 1968, 90(24): 6795-6803 |
[67] | Danckwerts P V. The reactions of CO2 with ethanolamines[J]. Chem. Eng. Sci., 1979, 34(4): 443-446 |
[68] | Versteeg G F, van Swaaij W P M. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions(Ⅰ): Primary and secondary amines[J]. Chem. Eng. Sci., 1987, 43(3): 573-585 |
[69] | Crooks J E, Donnellan J P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J]. J. Chem. Soc. Per. Trans., 1989, 2(2): 331-333 |
[70] | Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes [J]. Ind. Eng. Chem. Fundam., 1980, 19(3): 260-266 |
[71] | Laddha S S, Danckwerts P V. Reaction of CO2 with ethanolamines: kinetics from gas-absorption[J]. Chem. Eng. Sci., 1981, 36(3): 479-482 |
[72] | Dekker W A, Snoeck E, Kramers H. Rate of absorption of NO2 in water[J]. Chem. Eng. Sci., 1959, 11(1): 61-71 |
[73] | Alper E. Kinetics of reactions of carbon dioxide with diglycolamine and morpholine[J]. Chem. Eng. J., 1990, 44(2): 107-111 |
[74] | Danckwerts P V. Kinetics of the absorption of carbon dioxide in water[J]. Research, 1949, 2: 494-495 |
[75] | Pohorecki R, Moniuk W. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions[J]. Chem. Eng. Sci., 1988, 43(7): 1677-1684 |
[76] | Roshchin B E, Leites I L. Kinetics of reaction of carbon dioxide with aqueous solutions of monoethanolamine[J]. Theor. Found. Chem. Eng., 1984, 18(1): 26-30 |
[77] | Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions[J]. Chem. Eng. Sci., 2003, 58(23/24): 5195-5210 |
[78] | Nunge R J, Gill W N. Gas-liquid kinetics—absorption of carbon dioxide in diethanolamine[J]. AIChE J., 1963, 9(4): 469-474 |
[79] | Coldrey P W, Harris I J. Kinetics of the liquid phase reaction between carbon dioxide and diethanolamine[J]. Can. J. Chem. Eng., 1976, 54(6): 566-571 |
[80] | Kim C J, Savage D W. Kinetics of carbon dioxide reaction with diethylaminothanol in aqueous solutions[J]. Chem. Eng. Sci., 1987, 42(6): 1481-1487 |
[81] | Rinker E B, Ashour S S, Sandall O C. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine[J]. Ind. Eng. Chem. Res., 1996, 35(4): 1107-1114 |
[82] | Savage D W, Kim C J. Chemical kinetics of carbon dioxide reactions with diethanolamine and diisopropanolamine in aqueous solutions[J]. AIChE J., 1985, 31(2): 296-301 |
[83] | Sotelo J, Benitez F J, Beltran-Heredia J, Rodriguez C. Kinetics of carbon dioxide absorption in aqueous solutions of diisopropanolamine[J]. Chem. Eng. Techno., 1992, 15(2): 114-118 |
[84] | Hikita H, Ishikawa H, Asai S, Honda M. Kinetics of reactions of carbon dioxide with moniethanolamine, diethanolamine and triethanolamine by a rapid mixing method[J]. Chem. Eng. J. Bio. Eng. J., 1977, 13(1): 7-12 |
[85] | Dolores La Rubia M, Pacheco R, Sanchez A, Garcia A B L, Sanchez S, Camacho F. Kinetic study of the absorption of carbon dioxide by aqueous triethanolamine solutions[J]. Int. J. Chem. React. Eng., 2012, 10(1): A64 |
[86] | Yu W C, Astarita G, Savage D W. Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine[J]. Chem. Eng. Sci., 1985, 40(8): 1585-1590 |
[87] | Haimour N, Bidarian A, Sandall O C. Kinetics of the reaction between carbon dioxide and methyldiethanolamine[J]. Chem. Eng. Sci., 1987, 42(6): 1393-1398 |
[88] | Ko J J, Li M H. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water[J]. Chem. Eng. Sci., 2000, 55(19): 4139-4147 |
[89] | Yih S M, Shen K P. Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methly-1-propanol aqueous solutions[J]. Ind. Eng. Chem. Res. , 1988, 27(12): 2237-2241 |
[90] | Xu S, Wang Y W, Otto F D, Mather A E. Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions[J]. Chem. Eng. Sci. , 1996, 51(6): 841-850 |
[91] | Messaoudi B, Sada E. Kinetics of absorption of carbon dioxide into aqueous solution of sterically hindered 2-amono-2-methyl-1-propanol[J]. J. Chem. Eng. Jap. , 1996, 29(1): 193 |
[92] | Samanta A, Bandyopadhyay S S. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of piperazine[J]. Chem. Eng. Sci. , 2007, 62(24): 7312-7319 |
[93] | Rayer A V, Z.sumo'n K, Henni A, Tontiwachwuthikul P. Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique[J]. Energy Procedia, 2011, 4: 140-147 |
[94] | García-Abuín A, Gómez-Díaz D, Navaza J M, Vidal-Tato I. Kinetics of carbon dioxide chemical absorption into cyclic amines solutions[J]. AIChE J. , 2011, 57(8): 2244-2250 |
[95] | Ma'mun S, Dindore V Y, Svendsen H F. Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-aminoethyl) amino) ethanol[J]. Ind. Eng. Chem. Res. , 2007, 46(2):385-394 |
[96] | Bindwal A B, Vaidya P D, Kenig E Y. Kinetics of carbon dioxide removal by aqueous diamines[J]. Chem. Eng. J. , 2011, 169(1/2/3): 144-150 |
[97] | Hartono A, da Silva E F, Svendsen H F. Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA) [J]. Chem. Eng. Sci. , 2009, 64(14): 3205-3213 |
[98] | Sada E, Kumazawa H, Han Z Q, Matsuyama H. Chemical kinetics of the reaction of carbon dioxide with ethanolamines in nonaqueous solvents[J]. AIChE J., 1985, 31(8): 1297-1303 |
[99] | Park S W, Lee J W, Choi B S, Lee J W. Reaction kinetics of carbon dioxide with diethanolamine in polar organic solvents[J]. Sep. Sci. Techno. , 2005, 40(9): 1885-1898 |
[100] | Sada E, Kumazawa H, Ikehara Y, Han Z Q. Chemical kinetics of the reaction of carbon dioxide with triethanolamine in non-aqueous solvents[J]. Chem. Eng. J. , 1989, 40(1): 7-12 |
[101] | Sada E, Kumazawa H, Osawa Y, Matsuura M, Han Z Q. Reaction kinetics of carbon dioxide with amines in non-aqueous solvents[J]. Chem. Eng. J. , 1986, 33(2): 87-95 |
[102] | Liao C H, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine [J]. Chem. Eng. Sci. , 2002, 57(21): 4569-4582 |
[103] | Lin C Y, Soriano A N, Li M H. Kinetics study of carbon dioxide absorption into aqueous solutions containing N-methyldiethanolamine + diethanolamine[J]. J. Taiwan Ins. Chem. Eng. , 2009, 40(4): 403-412 |
[104] | Zhang X, Zhang C F, Qin S J, Zheng Z S. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine[J]. Ind. Eng. Chem. Res. , 2001, 40(17): 3785-3791 |
[105] | Wang H M, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-l-propanol + diethanolamine [J]. J. Chem. Eng. Jap., 2004, 37(2): 267-278 |
[106] | Huang Y M, Soriano A N, Caparanga A R, Li M H J. Kinetics of absorption of carbon dioxide in 2-amino-2-methyl-l-propanol + N-methyldiethanolamine+water[J]. J. Taiwan Ins. Chem. Eng., 2011, 42(1): 76-85 |
[107] | Seo D J, Hong W H. Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol[J]. Ind. Eng. Chem. Res., 2000, 39(6): 2062-2067 |
[108] | Sun W C, Yong C B, Li M H. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine[J]. Chem. Eng. Sci., 2005, 60(2): 503-516 |
[109] | Aronu U E, Hartono A, Hoff K A, Svendsen H F. Kinetics of carbon dioxide absorption into aqueous amino acid salt: potassium salt of sarcosine solution[J]. Ind. Eng. Chem. Res., 2011, 50(18): 10465-10475 |
[110] | Gómez-Díaz D, Navaza J M. Kinetics of carbon dioxide absorption into aqueous glucosamine solutions[J]. AIChE J., 2008, 54(1): 321-326 |
[111] | Yamamoto Y, Hasegawa J Y, Ito Y J. Kinetic investigation on carbamate formation from the reaction of carbon dioxide with amino acids in homogeneous aqueous solution[J]. Phys. Org. Chem., 2012, 25(3): 239-247 |
[112] | Aronu U E, Hartono A, Svendsen H F. Kinetics of carbon dioxide absorption into aqueous amine amino acid salt: 3-(methylamino) propylamine/sarcosine solution[J]. Chem. Eng. Sci., 2011, 66(23): 6109-6119 |
[113] | Vaidya P D, Konduru, Vaidyanathan M, Kenig E Y. Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts[J]. Ind. Eng. Chem. Res., 2010, 49(21): 11067-11072 |
[114] | Pani F, Gaunand A, Cadours R, Bouallou C, Richon D. Kinetics of absorption of CO2 in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K[J]. J. Chem. Eng. Data, 1997, 42(2): 353-359 |
[115] | Brian P L T, Hurley J F, Hasseltine E H. Penetration theory for gas absorption accompanied by a second order chemical reaction[J]. AIChE J., 1961, 7(2): 226 |
[116] | Versteeg G F, van Swaaij W P M. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions[J]. J. Chem. Eng. Data, 1988, 33(1): 29-34 |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[7] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[12] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||