[1] |
Wang J. Electrochemical glucose biosensors [J]. Chemical Reviews, 2007, 108(2): 814-825
|
[2] |
Tasviri M, Rafiee-Pour H-A, Ghourchian H, Gholami M R. Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing [J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 68(2): 206-210
|
[3] |
Kumar M A, Jung S, Ji T. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods [J]. Sensors, 2011, 11(5): 5087-5111
|
[4] |
Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides [J]. Sensors, 2010, 10(5): 4855-4886
|
[5] |
Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Graphene based electrochemical sensors and biosensors: a review [J]. Electroanalysis, 2010, 22(10): 1027-1036
|
[6] |
Dhand C, Das M, Datta M, Malhotra B D. Recent advances in polyaniline based biosensors [J]. Biosensors and Bioelectronics, 2011, 26(6): 2811-2821
|
[7] |
Ramanavi?ius A, Ramanavi?ien? A, Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole [J]. Electrochimica Acta, 2006, 51(27): 6025-6037
|
[8] |
Zuo S H, Teng Y J, Yuan H H, Lan M B. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 555-560
|
[9] |
Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications [J]. Chemical Reviews, 2007, 107(7): 2891-2959
|
[10] |
Wang Z, Lou X W. TiO2 Nanocages: fast synthesis, interior functionalization and improved lithium storage properties [J]. Advanced Materials, 2012, 24(30): 4124-4129
|
[11] |
Zhuang Wei(庄伟), Lü Linghong(吕玲红), Wu Xinbing(邬新兵), Meng Meng(蒙萌), Zhu Yudan(朱育丹), Lu Xiaohua(陆小华). TiO2-B fibres derived from K2Ti4O9 as fast lithium intercalation negative material [J]. CIESC Journal(化工学报), 2013, 64(1): 374-390
|
[12] |
Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells [J]. Advanced Materials, 2009, 21(21): 2206-2210
|
[13] |
Wu Y, Hu S. Biosensors based on direct electron transfer in redox proteins [J]. Microchimica Acta, 2007, 159(1/2): 1-17
|
[14] |
Bao S J, Li C M, Zang J F, Cui X Q, Qiao Y, Guo J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications [J]. Advanced Functional Materials, 2008, 18(4): 591-599
|
[15] |
Si P, Ding S J, Yuan J, Lou X W, Kim D H. Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing [J]. ACS Nano, 2011, 5(9): 7617-7626
|
[16] |
Durrant J R, Haque S A, Palomares E. Towards optimisation of electron transfer processes in dye sensitised solar cells [J]. Coordination Chemistry Reviews, 2004, 248(13/14): 1247-1257
|
[17] |
Hecht H J, Schomburg D, Kalisz H, Schmid R D. The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme [J]. Biosensors and Bioelectronics, 1993, 8(3/4): 197-203
|
[18] |
Guo C X, Li C M. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite [J]. Physical Chemistry Chemical Physics, 2010, 12(38): 12153-12159
|
[19] |
Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosensors and Bioelectronics, 2003, 19(3): 177-183
|
[20] |
Huang Y, Zhang W, Xiao H, Li G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode [J]. Biosensors and Bioelectronics, 2005, 21(5): 817-821
|
[21] |
Clark L J, Lyons C. Electrode systems for continuous monitoring in cardinovascular surgery [J]. Ann. NY Acad. Sci., 1962, 102: 29-45
|
[22] |
Deng S Y, Guo Q J, Lei J P, Hu Z, Ju H X. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes [J]. Biosensors and Bioelectronics, 2009, 25(2): 373-377
|
[23] |
Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry, 1979, 101(1): 19-28
|
[24] |
Wu S, Ju H X, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins [J]. Advanced Functional Materials, 2007, 17(4): 585-592
|
[25] |
Cai C X, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Analytical Biochemistry, 2004, 332(1): 75-83
|
[26] |
Wong C M, Wong K H, Chen X D. Glucose oxidase: natural occurrence, function, properties and industrial applications [J]. Applied Microbiology and Biotechnology, 2008, 78(6): 927-938
|
[27] |
Pang X, He D, Luo S, Cai Q. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite [J]. Sensors and Actuators B: Chemical, 2009, 137(1): 134-138
|
[28] |
Lineweaver H, Burk D. The determination of enzyme dissociation constants [J]. Journal of the American Chemical Society, 1934, 56: 658-666
|
[29] |
Wang Y Y, Wang X S, Wu B Y, Zhao Z X, Yin F, Li S, Qin X, Chen Q. Dispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor [J]. Sensors and Actuators B: Chemical, 2008, 130(2): 809-815
|
[30] |
Li Q W, Luo G A, Feng J, Zhou Q, Zhang L, Zhu Y F. Amperometric detection of glucose with glucose oxidase absorbed on porous nanocrystalline TiO2 film [J]. Electroanalysis, 2001, 13(5): 413-416
|