[1] |
Ghindilis A L, Atanasov P, Wilkins E. Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications[J]. Electroanalysis, 1997, 9(9): 661-674
|
[2] |
Mano N, Mao F, Heller A. A miniature biofuel cell operating in a physiological buffer[J]. J. Am. Chem. Soc., 2002, 124(44): 12962- 12963
|
[3] |
Lü Linghong(吕玲红),Hu Yuyan(胡煜艳),Zhu Yudan(朱育丹), Lü Zhihua(吕志华), Liu Chang(刘畅), Feng Xin(冯新), Lu Xiaohua(陆小华). Capacitance performance of mesoporous TiO2 whisker and composite loaded with RuO2 [J]. Journal of Chemical Industry and Engineering(China)(化工学报),2008,59(2):490-496
|
[4] |
Lu L H, Zhu Y D, Li F J, Zhuang W, Chan K Y, Lu X H. Carbon titania mesoporous composite whisker as stable supercapacitor electrode material[J]. Journal of Materials Chemistry, 2010, 20: 7645-7651
|
[5] |
Zhuang W, Lu L H, Wu X B, Jin W, Meng M, Zhu Y D, Lu X H. TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries[J]. Electrochemistry Communication, 2013, 27:124-127
|
[6] |
Zhang A J, Xie Y, Zhou J. Experimental control and characterization of protein orientation on surfaces[J]. Progress in Chemistry, 2009, 21(7/8): 1408-1417
|
[7] |
Aguey K F, Bernhardt P V, Kappler U, et al. Direct electrochemistry of a bacterical sulfite dehydrogenase[J]. J. Am. Chem. Soc., 2003, 125: 530-535
|
[8] |
Dong Shaojun(董邵俊), Che Guangli(车广礼), Xie Yuanwu(谢远武). Chemical Modified Electrodes(化学修饰电极修订版)[M]. Beijing: Science Press, 2003: 456-570
|
[9] |
Hartman M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chem. Mater., 2005, 17(18): 4577-4593
|
[10] |
Hecht H J, Kalisz, Hendle J, et al. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution[J]. J. Mol. Biol., 1993, 229(1): 153-172
|
[11] |
Shieev S, Tkac J, Chiristenson A, et al. Direct electon transfer between copper-containing proteins and electrodes[J]. Biosens. Bioelectron., 2005, 20(12): 2517-2554
|
[12] |
Chen X, Hu Y, Wilson G S. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane[J]. Biosens. Bioelectron., 2002, 17(11/12): 1005-1013
|
[13] |
Niu J, Lee J Y. Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix[J]. Sens. Actuators B, 2002, 82(2/3): 250-258
|
[14] |
Chen X, Dong S. Sol-gel-derived titanium oxide/copolymer composite based glucose biosensors[J]. Biosens. Bioelectron., 2003, 18(8): 999-1004
|
[15] |
Zhou Y X, Nagaoka T, Zhu G Y. Electrochemical studies of cytochrome c disulfied at gold electrodes[J]. Biophysical Chemistry, 1999, 79(1): 55-62
|
[16] |
Xu J J, Yu Z H, Chen H Y. Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion[J]. Anal. Chim. Acta, 2002, 463(2): 239-247
|
[17] |
Reiter S, Habermuller K, Schuhmann W. A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films[J]. Sens. Actuators B, 2001, 79(2/3): 150-156
|
[18] |
Lindren A, Ruzgas T, Gorton L. Direct electron transfer of native and modified peroxidases[J]. Curr. Top. Anal. Chem., 2001, 2: 71-94
|
[19] |
Jiang L, McNeil C J, Cooper J M. Direct electron transfer reaction of glucose oxidase immobilized at a self-assembled monolayer[J]. J. Chem. Soc. Chem. Commun., 1995, 2: 1293-1295
|
[20] |
Salimi A, Compton R G, Hallaj R. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode[J]. Analytical Biochemistry, 2004, 333(1): 49-56
|
[21] |
Sun Y P, Fu K, Lin Y, et al. Functionalized carbon nanotubes: properties and applications[J]. Accounts of Chemical Research, 2002, 35(12): 1096-1104
|
[22] |
Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes[J]. Journal of American Chemical Society, 2002, 124(5): 760-761
|
[23] |
Banerijee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes[J]. Advanced Materials, 2005, 17(1):17-29
|
[24] |
Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential medicinal applications[J]. Drug Discover Today, 2010, 15(11/12): 428-435
|
[25] |
Niyogi S, Hamon M A, Haddon R C. Chemistry of single-walled carbon nanotubes[J]. Accounts of Chemical Research, 2002, 35(12): 1105-1113
|
[26] |
Yan Y M, Zhang M N, Gong K P, et al. Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite[J]. Chem. Mater., 2005, 17(13): 3457-3463
|
[27] |
Bandow S, Rao A M, Willians K A, et al. Purification of single-wall carbon nanotubes by microfiltration[J]. Journal of Physical Chemistry B,1997, 101(44): 8839-8842
|
[28] |
Matarredona O, Rhoads H, Li Z R, et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDES[J]. Journal of Physical Chemistry B, 2003, 107(48): 13357-13367
|
[29] |
Kamat P V, Thomas K G., Barazzouk S, et al. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field[J]. Journal of American Chemical Science, 2004, 126(36): 10757-10762
|
[30] |
Zhou J, Chen S, Jiang S. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model[J]. Langmuir, 2003, 19(8): 3472-3478
|
[31] |
Zhou J, Zheng J, Jiang S. Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers[J]. The Journal of Physical Chemistry B, 2004, 108(45): 17418-17424
|
[32] |
Xie Y, Zhou J, Jiang S. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces[J]. The Journal of Chemical Physics, 2010, 132(6): 065101
|
[33] |
Liu J, Liao C, Zhou J. Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers[J]. Langmuir, 2013, 29(36): 11366-11374
|
[34] |
Wang T, Hu X G, Qu X H, et al. Noncovalent functionalization of multiwalled carbon nanotubes: application in hybrid nanostructures [J]. Journal of Physical Chemistry B, 2006, 110(13): 6631-6636
|
[35] |
Zheng Minqiang(郑敏强) . The preparation of carbon nanotubes composites and the application in biological sensing[D]. Nanchang: Nanchang University, 2008
|
[36] |
Zhao Y D, Zhang W D, Chen H, et al. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode[J]. Anal. Sci., 2002, 18(8): 939-941
|
[37] |
Liu J Q, Paddon M N, Gooding J J. Heterogeneous electron-transfer kinetics for flavin adenine dinucleotide and ferrocene through alkanethiol mixed monolayers on gold electrodes[J]. J. Phys. Chem. B, 2004, 108(24): 8460-8466
|
[38] |
Bard A J, Faulkner L R. Electrochemical Methods, Fundamental and Applications[M]. 2nd ed. New York: John Wiley& Sons Inc., 2001: 594
|
[39] |
Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J]. Biosens. Bioelectron., 2003, 19(3): 177-183
|
[40] |
Chi Q, Zhang J, Dong S J, et al. Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes[J]. Electrochim. Acta, 1994, 39(16): 2413-2438
|