[1] |
Trotu? I T, Zimmermann T, Schüth F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited [J]. Chem. Rev., 2013, 114(3): 1761-1782.
|
[2] |
Steinborn D. Fundamentals of organometallic catalysis[M]. New York:John Wiley & Sons, 2011.
|
[3] |
Chen Y, Xie C, Li Y, Song C, Bolin T B. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study [J]. Phys. Chem. Chem. Phys., 2010, 12(21): 5707-5711.
|
[4] |
Adesina A A. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs [J]. Appl. Catal. A: General, 1996, 138(2): 345-367.
|
[5] |
Wood B J, Isakson W E, Wise H. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures [J]. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(2): 197-204.
|
[6] |
Fitzharris W D, Katzer J R, Manogue W H. Sulfur deactivation of nickel methanation catalysts [J]. J. Catal., 1982, 76(2): 369-384.
|
[7] |
Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/MoSx and Ni/S/Mo (110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes [J]. J. Phys. Chem. B., 1999, 103(39): 8310-8318.
|
[8] |
Chattanathan S A, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion [J]. Int. J. Hydrogen Energy, 2014, 39(35): 19905-19911.
|
[9] |
Beale A M, Gibson E K, O'Brien M G, Jacques S D, Cernik R J, di Michiel M, Weckhuysen B M. Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies [J]. J. Catal., 2014, 314: 94-100.
|
[10] |
Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning [J]. Appl. Catal. A: General, 2014, 471: 118-125.
|
[11] |
Prasad B, Janardhanan V M. Modeling sulfur poisoning of Ni-based anodes in solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161(3): F208-F213.
|
[12] |
Sparks D E, Jacobs G, Gnanamani M K, Pendyala V R R. Poisoning of cobalt catalyst used for Fischer-Tropsch synthesis [J]. Catal. Today, 2013, 215: 67-72.
|
[13] |
Lakhapatri S L, Abraham M A. Sulfur poisoning of Rh-Ni catalysts during steam reforming of sulfur-containing liquid fuels [J]. Catal. Sci. Technol., 2013, 3(10): 2755-2760.
|
[14] |
Bartholomew C H. Mechanisms of catalyst deactivation [J]. Appl. Catal. A: General, 2001, 212(1): 17-60.
|
[15] |
Yan X, Liu Y, Zhao B, Wang Y, Liu C J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor [J]. Phys. Chem. Chem. Phys., 2013, 15(29): 12132-12138.
|
[16] |
Bartholomew C H, Agrawal P K, Katzer J R. Sulfur poisoning of metals [J]. Adv. Catal., 1982, 31: 135-242.
|
[17] |
Zhang J, Liu N, Li W, Dai B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts [J]. Front. Chem. Sci. Eng., 2011, 5(4): 514-520.
|
[18] |
Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination [J]. J. Chem. Soc., Chem. Commun., 1988, (1): 71-72.
|
[19] |
Hutchings G J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts [J]. J. Catal., 1985, 96(1): 292-295.
|
[20] |
Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal., 2008, 257(1): 190-198.
|
[21] |
Huang C, Zhu M, Kang L, Li X, Dai B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction [J]. Chem. Eng. J., 2014, 242: 69-75.
|
[22] |
Chen Y W, Chen H J, Lee D S. Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream [J]. J. Mole. Catal. A: Chemical, 2012, 363: 470-480.
|
[23] |
Dai B, Wang Q, Yu F, Zhu M. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination [J]. Scientific Reports, 2014, 5: 10553-10553.
|
[24] |
Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Lin T S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. J. Am. Chem. Soc., 2012, 134(24): 10251-10258.
|
[25] |
Li X, Zhu M, Dai B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts [J]. Appl. Catal. B: Environmental, 2013, 142: 234-240.
|
[26] |
Mikhlin Y, Likhatski M, Karacharov A, Zaikovski V, Krylov A. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions [J]. Phys. Chem. Chem. Phys., 2009, 11(26): 5445-5454.
|
[27] |
Baatz C, Decker N, Prüβe U. New innovative gold catalysts prepared by an improved incipient wetness method [J]. J. Catal., 2008, 258(1): 165-169.
|