[1] |
LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology [J]. Environmental Science & Technology, 2006, 40 (17): 5181-5192. DOI: 10.1021/es0605016.
|
[2] |
YONG X Y, FENG J, CHEN Y L, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell [J]. Biosens. Bioelectron., 2014, 56: 19-25. DOI: 10.1016/j.bios.2013.12.058.
|
[3] |
YONG X Y, SHI D Y, CHEN Y L, et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells [J]. Bioresource Technology, 2014, 152: 220-224. DOI: 10.1016/j.biortech.2013.10.086.
|
[4] |
SHEN H B, YONG X Y, CHEN Y L, et al. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells [J]. Bioresource Technology, 2014, 167: 490-494. DOI: 10.1016/j.biortech.2014.05.093.
|
[5] |
王维大, 李浩然, 冯雅丽, 等. 微生物燃料电池的研究应用进展 [J]. 化工进展, 2014, 33 (5): 1067-1076. DOI: 10.3969/j.issn.1000-6613.2014.05.001. WANG W D, LI H R, FENG Y L, et al. Research and application advances in microbial fuel cell [J]. Chemical Industry and Engineering Progress, 2014, 33 (5): 1067-1076. DOI: 10.3969/j.issn.1000-6613.2014.05.001.
|
[6] |
刘晶晶, 孙永明, 孔晓英, 等. 微生物燃料电池中底物的研究进展 [J]. 环境科学与技术, 2011, 34 (6): 104-108. DOI: 10.3969/j.issn.1003-6504.2011.06.023. LIU J J, SUN Y M, KONG X Y, et al. Research advance on substrates in microbial fuel cells [J]. Environmental Science & Technology, 2011, 34 (6): 104-108. DOI: 10.3969/j.issn.1003-6504.2011.06.023.
|
[7] |
PANT D, VAN BOGAERT G, DIELS L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production [J]. Bioresource Technology, 2010, 101 (6): 1533-1543. DOI: 10.1016/j.biortech.2009.10.017.
|
[8] |
曹琳, 雍晓雨, 周俊, 等. 以沼液为原料的微生物燃料电池产电降解特性 [J]. 化工学报, 2014, 65 (5): 1900-1905. DOI: 10.3969/j.issn.0438-1157.2014.05.049. CAO L, YONG X Y, ZHOU J, et al. Electrical and degradation characteristics of microbial fuel cell using biogas slurry as substrate [J]. CIESC Journal, 2014, 65 (5): 1900-1905. DOI: 10.3969/j.issn.0438-1157.2014.05.049.
|
[9] |
夏大平, 王振, 苏现波, 等. 生物甲烷气实验的外加菌源(沼液)中厌氧菌群测定 [J]. 高校地质学报, 2015, 21 (1): 168-171. DOI: 10.16108/j.issn.l006-7493.2014057. XIA D P, WANG Z, SU X B, et al. Determination of anaerobic bacterial consortia in added microbial sources (biogas slurry) for biogenic methane experiment [J]. Geological Journal of China Universities, 2015, 21 (1): 168-171. DOI: 10.16108/j.issn.l006-7493.2014057.
|
[10] |
NEYENS E, BAEYENS J. A review of classic Fenton's peroxidation as an advanced oxidation technique [J]. Journal of Hazardous Materials, 2003, 98 (1/2/3): 33-50. DOI: 10.1016/S0304-3894(02)00282-0.
|
[11] |
PERA-TITUS M, GARCÍA-MOLINA V, BAÑOS M A, et al. Degradation of chlorophenols by means of advanced oxidation processes: a general review [J]. Applied Catalysis B: Environmental, 2004, 47 (4): 219-256. DOI: 10.1016/j.apcatb.2003.09.010.
|
[12] |
蒋胜韬, 祝建中, 管玉江, 等. 非均相类Fenton 法降解硝基苯化工废水的效能及其机制 [J]. 化工学报, 2014, 65 (4): 1488-1494. DOI: 10.3969/j.issn.0438-1157.2014.04.045. JIANG S T, ZHU J Z, GUAN Y J, et al. Performance of heterogeneous Fenton-like system for degradation of nitrobenzene-containing wastewater [J]. CIESC Journal, 2014, 65 (4): 1488-1494. DOI: 10.3969/j.issn.0438-1157.2014.04.045.
|
[13] |
LI J P, AI Z H, ZHANG L Z. Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment [J]. J. Hazard. Mater., 2009, 164 (1): 18-25. DOI: 10.1016/j.jhazmat.2008.07.109.
|
[14] |
GRAUPERA E, LEAL C, GRANADOS M, et al. Determination of tributyltin and triphenyltin in sediments by liquid chromatography with fluorimetric detection assessment of spiking procedures [J]. J. Chromatogr. A, 1999, 846 (1/2): 413-423. DOI: 10.1016/S0021-9673(98)01033-4.
|
[15] |
晏云鹏, 全学军, 葛淑萍, 等. 垃圾渗滤液生化出水絮凝-纳滤处理及过程机理 [J]. 化工学报, 2015, 66 (6): 2280-2287. DOI: 10.11949/j.issn. 0438-1157. 20150099. YAN Y P, QUAN X J, GE S P, et al. Flocculation-nanofiltration treatment of biologically treated leachate and process mechanism [J]. CIESC Journal, 2015, 66 (6): 2280-2287. DOI: 10.11949/j.issn. 0438-1157. 20150099.
|
[16] |
于振花, 荆淼, 王小如, 等. 液液萃取-高效液相色谱-电感耦合等离子体质谱同时测定海水中的多种有机锡 [J]. 光谱学与光谱分析, 2009, 29 (10): 2855-2859. DOI: 10.3964/j.issn.1000-0593(2009)10-2855-05. YU Z H, JING M, WANG X R, et al. Simultaneous determination of multi-organotin compounds in seawater by liquid-liquid extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Spectroscopy and Spectral Analysis, 2009, 29 (10): 2855-2859. DOI: 10.3964/j.issn.1000-0593(2009)10-2855-05.
|
[17] |
REGUERA G, NEVIN K P, NICOLL J S, et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells [J]. Appl. Environ. Microbiol., 2006, 72 (11): 7345-7348. DOI: 10.1128/AEM.01444-06.
|
[18] |
LEDEZMA P, GREENMAM J, IEROPOULOS I. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells [J]. Bioresource Technology, 2012, 118: 615-618. DOI: 10.1016/j.biortech.2012.05.054.
|
[19] |
孟瑶, 付玉彬, 梁生康, 等. 石油污染物对海底微生物燃料电池性能的影响及加速降解效应 [J]. 环境科学, 2015, 36 (8): 3080-3085. DOI: 10.13227/j.hjkx.2015.08.048. MENG Y, FU Y B, LIANG S K, et al. Effects of oil pollutants on the performance of marine benthonic microbial fuel cells and its acceleration of degradation [J]. Environmental Science, 2015, 36 (8): 3080-3085. DOI: 10.13227/j.hjkx.2015.08.048.
|
[20] |
KANG C S, EAKTASANG N, KWON D Y, et al. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell [J]. Bioresource Technology, 2014, 165: 27-30. DOI: 10.1016/j.biortech.2014.03.148.
|
[21] |
隋倩雯, 董红敏, 朱志平, 等. 提高猪场沼液净化处理效果的氨吹脱控制参数 [J]. 农业工程学报, 2012, 28 (11): 205-211. DOI: 10.3969/j.issn.1002-6819.2012.11.033. SUI Q W, DONG H M, ZHU Z P, et al. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (11): 205-211. DOI: 10.3969/j.issn.1002-6819.2012.11.033.
|
[22] |
马焕春, 陈玉成, 陈瑶. 电化学法预处理沼液的研究 [J]. 中国沼气, 2014, 32 (2): 26-29. DOI: 10.3969/j.issn.1000-1166.2014.02.007. MA H C, CHEN Y C, CHEN Y. Pretreatment of biogas slurry by electrochemical process [J]. China Biogas, 2014, 32 (2): 26-29. DOI: 10.3969/j.issn.1000-1166.2014.02.007.
|
[23] |
余鸿婷, 李敏. 反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用 [J]. 微生物学报, 2015, 55 (3): 264-272. DOI: 10.13343/j.cnki.wsxb.20140329. YU H T, LI M. Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment—a review [J]. Acta Microbiologica Sinica, 2015, 55 (3): 264-272. DOI: 10.13343/j.cnki.wsxb.20140329.
|
[24] |
王聪, 王淑莹, 张淼, 等. 多因素对反硝化除磷过程中COD、N 和P 的去除分析 [J]. 化工学报, 2015, 66 (4): 1467-1475. DOI: 10.11949/j.issn.0438-1157.20141549. WANG C, WANG S Y, ZHANG M, et al. Analysis of COD, N and P in denitrifying phosphorus removal under multivariate condition [J]. CIESC Journal, 2015, 66 (4): 1467-1475. DOI: 10.11949/j.issn.0438-1157.20141549.
|
[25] |
TAO H C, WEI X Y, ZHUANG L J, et al. Degradation of p-nitrophenol in a BES-Fenton system based on limonite [J]. Journal of Hazardous Materials, 2013, 254: 236-241. DOI: 10.1016/j.jhazmat.2013.03.061.
|
[26] |
ZHUANG L, ZHOU S G, LI Y T, et al. In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells [J]. Journal of Power Sources, 2010, 195 (5): 1379-1382. DOI: 10.1016/j.jpowsour.2009.09.011.
|
[27] |
WANG X Q, LIU C P, YUAN Y, et al. Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions [J]. Journal of Hazardous Materials, 2014, 275: 200-209. DOI: 10.1016/j.jhazmat.2014.05.003.
|
[28] |
LI Y, LU A H, DING H R, et al. Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate [J]. Electrochemistry Communications, 2010, 12 (7): 944-947. DOI: 10.1016/j.elecom.2010.04.027.
|
[29] |
STANG P M, LEE R F, SELLGMAN P F. Evidence for rapid, nonbiological degradation of tributyltin compounds in autoclaved and heat-treated fine-grained sediments [J]. Environmental Science and Technology, 1992, 26 (7): 1382-1387. DOI: 10.1021/es00031a016.
|
[30] |
HOCH M. Organotin compounds in the environment: an overview [J]. Applied Geochemistry, 2001, 16 (7): 719-743. DOI: 10.1016/S0883-2927(00)00067-6.
|
[31] |
SUN G X, ZHOU W Q, ZHONG J J. Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment [J]. Appl. Environ. Microbiol., 2006, 72 (9):6411-6413. DOI: 10.1128/AEM.00957-06.
|
[32] |
HUANG J, YE J S, MA J W, et al. Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponin [J]. Chemical Engineering Journal, 2014, 249:167-173. DOI: 10.1016/j.cej.2014.03.110.
|
[33] |
SODERQUIST C J, CROSBY D G. Degradation of triphenyltin hydroxide in water [J]. J. Agric. Food Chem., 1980, 28 (1): 111-117. DOI: 10.1021/jf60227a015.
|
[34] |
YE J S, YIN H, PENG H, et al. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis [J]. Bioresource Technology, 2013, 129: 236-241. DOI: 10.1016/j.biortech.2012.11.076.
|