[1] |
GALANT L, KAUFMAN R C, WILSON J D. Glucose: detection and analysis [J]. Food Chemistry, 2015, (188): 149-160 DOI:10.1016/j.foodchem.2015.04.071.
|
[2] |
Wang J. Electrochemical glucose biosensors [J]. Chemical Reviews, 2008, 108 (2): 814-825 DOI: 10.1021/cr068123a.
|
[3] |
Alwarappan S, Boyapalle S, Kumar A, et al. Comparative study of single-, few-, and multilayered graphene [J]. Phys. Chem. C, 2012, 116 (11): 6556. doi: 10.1021/jp211201b.
|
[4] |
GU T, ZHANG Y, DENG F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film [J]. Environ. Sci., 2011, 23 (Supplement): S66. DOI: 10.1016/S1001-0742(11)61080-2.
|
[5] |
LUO Z M, YUWEN, L H, HAN Y J, et al. Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing [J]. Biosens. Bioelectron., 2012, 36 (1): 179. DOI:10.1016/j.bios.2012.04.009.
|
[6] |
WANG Y, YUAN R, CHAIA Y, et al. Direct electron transfer: electrochemical glucose biosensor based on hollow Pt nanosphere functionalized multiwall carbon nanotubes [J]. Mol. Catal. B: Enzym., 2011, 71 (3/4):146. DOI:10.1016/j.molcatb.2011.04.011.
|
[7] |
于志辉, 宿婷婷, 任翠华, 等. 炭气凝胶纳米颗粒固定葡萄糖氧化酶的直接电化学 [J].物理化学学报, 2012, 28 (12): 2867-2873. DOI:10.3866/PKU.WHXB201209201. YU Z H, SU T T, REN C H, et al. Direct electrochemistry and immobilization of glucose oxidase on nano-carbon aerogels [J]. Acta Phys.-Chim. Sin., 2012, 28 (12): 2867-2873. DOI: 10.3866/PKU. WHXB201209201.
|
[8] |
DONG J, WEN Y, MIAO Y, et al. A nanoporous zirconium phytate film for immobilization of redox protein and the direct electrochemical biosensor [J]. Sensors and Actuators B, 2010, 150 (1): 141-147. DOI: 10.1016/j.snb.2010.07.029.
|
[9] |
LIU L M, SHEN B, SHI J J, et al. A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of α-zirconium phosphate [J]. Biosensors and Bioelectronics, 2010, 25 (12): 2627-2632. DOI: 10.1016/j.bios.2010.04.031.
|
[10] |
LIU L M, WEN J, LIU L, et al. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite [J]. Analytical Biochemistry, 2014, 445: 24-29. DOI: 10.1016/j.ab.2013.10.005.
|
[11] |
LIU L, ZHANG H T, SHEN B, et al. pH-induced fabrication of DNA/chitosan/alpha-ZrP nanocomposite and DNA release [J]. Nanotechnology, 2010, 21 (10): 105102. DOI: 10.1088/0957-4484/21/10/105102.
|
[12] |
BHAMBHANI A, KUMAR C V. Protein/DNA/inorganic materials: DNA binding to layered alpha-zirconium phosphate enhances bound protein structure and activity [J]. Adv. Mater., 2006, 18 (7): 939-942. DOI: 10.1002/adma.200502230.
|
[13] |
JONES D J, APTEL G, BRANDHORST M, et al. High surface area mesoporous titanium phosphate: synthesis and surface acidity determination [J]. J. Mater. Chem., 2000, 10 (8): 1957-1963. DOI: 10.1039/b002474k.
|
[14] |
BHAUMIK A, INAGAKI S J. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity [J]. J. Am. Chem. Soc., 2001, 123 (4): 691-696. DOI: 10.1021/ja002481s.
|
[15] |
TIEMANN M, FROBA M. Mesoporous aluminophosphates from a single-source precursor [J]. Chem. Commun., 2002, (5): 406-407. DOI: 10.1039/b110662g.
|
[16] |
TIAN B Z, LIU X Y, TU B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nat. Mater., 2003, 2 (3): 159-163. DOI: 10.1038/nmat838.
|
[17] |
MAL N K, ICHIKAWA S, FUJIWARA M. Synthesis of a novel mesoporous tin phosphate, SnPO4 [J]. Chem. Commun., 2002, (2): 112-113. DOI: 10.1039/B109948E.
|
[18] |
CHRISTIAN S, ALINE S, ANTONELLA G, et al. Hexagonal and cubic thermally stable mesoporous Tin(IV) phosphates with acidic and catalytic properties [J]. Angew. Chem. Int. Ed., 2002, 41 (9): 1594-1597. DOI: 10.1002/1521-3773(20020503)41:93.0.CO;2-W.
|
[19] |
SINHAMAHAPATRA A, SUTRADHAR N, ROY B, et al. Mesoporous zirconium phosphate catalyzed reactions: synthesis of industrially important chemicals in solvent-free conditions [J]. Applied Catalysis A: General, 2010, 385 (1): 22-30. DOI: 10.1016/j.apcata.2010.06.016.
|
[20] |
NIWA K, FURUKAWA M, NIKI K. Ir reflectance studies of electron-transfer ptomoters for cutochrome-c on a gold electrode [J]. J. Electroanal. Chem., 1988, 245 (1): 275-285. DOI: 10.1016/0022-0728(88)80074-3.
|
[21] |
IRACE G, BISMUTO E, SAVY F, et al. Unfolding pathway of myoglobin-molecular-properties of intermediate froms [J]. Arch. Biochem. Biophys., 1986, 244 (2): 459-469. DOI: 10.1016/0003-9861(86)90614-4.
|
[22] |
PERIASAMY A P. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode [J]. Bioelectrochemistry, 2011, 80 (2): 114-120. DOI: 10.1016/j.bioelechem.2010.06.009.
|
[23] |
SHAN C, YANG H, SONG S, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Anal. Chem., 2009, 81 (6): 2378-2382. DOI: 10.1021/ac802193c.
|
[24] |
YAO Y, SHIU K. Direct electrochemistry of glucose oxidase at carbon nanotube-gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating [J]. Electroanalysis, 2008, 20 (14): 1542-1548. DOI: 10.1002/elan.200804209.
|
[25] |
JIANG L, MCNEIL C J, COOPER J M. Direct electron-transfer reactions of glucose-oxidase immobilized at a self-assembled monolayer [J]. J. Chem. Soc. Chem. Commun., 1995, (12): 1293-1295. DOI: 10.1039/C39950001293.
|
[26] |
LIU S Q, JU H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosens. Bioelectron., 2003, 19 (9): 177-183. DOI: 10.1016/S0956-5663(03)00172-6.
|
[27] |
HUANG Y X, ZHANG W J, XIAO H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode [J]. Biosens. Bioelectron., 2005, 21 (5): 817-821. DOI: 10.1016/j.bios.2005.01.012.
|
[28] |
BARD A J, FAULKNER L R. Electrochemical Methods, Fundamental and Applications [M]. 2nd ed. New York: John Wiley & Sons Inc., 2001:594.
|
[29] |
LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Electroanal. Chem., 1979, 101 (1): 19-28. DOI: 10.1016/S0022-0728(79)80075-3.
|
[30] |
WU Y H, HU S S. Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor [J]. Bioelectrochem., 2007, 70 (2): 335-341. DOI: 10.1016/j.bioelechem.2006.05.001.
|
[31] |
MCKENZIE K J, MARKEN F. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate [J]. Langmuir, 2003, 19 (10): 4327-4331. DOI: 10.1021/la0267903.
|
[32] |
TAO Y, KANOH H, KANEKO K. ZSM-5 monolith of uniform mesoporous channels [J]. J. Am. Chem. Soc., 2003, 125 (20): 6044-6045. DOI: 10.1021/ja0299405.
|
[33] |
朱琼,魏雅,吴霞琴. 用羟基磷灰石和单壁碳纳米管制备葡萄糖传感器的研究 [J].化学研究与应用, 2011, 23 (4): 413-417. DOI: 1004-1656(2011)23:42.0.TX;2-9. ZHU Q, WEI Y, WU X Q. Glucose sensor based on hydroxyapatite and single-wall carbon nanotube composite [J]. Chemical Research and Application, 2011, 23 (4): 413-417. DOI: 1004-1656(2011)23:42.0.TX;2-9.
|
[34] |
CHEN W, DING Y, AKHIGBE J, et al. Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(Ⅱ)-SWNTs composite electrodes [J]. Biosensors and Bioelectronics, 2010, 26 (2): 504-510. DOI: 10.1016/j.bios.2010.07.062.
|