[1] |
CHOIS S. Enhancing Thermal Conductivity of Fluids with Nanoparticles[M]. New York: ASME, 1995: 99.
|
[2] |
GUPTE S K, ADVANI S G. Role of micro-convection due to non-acne motion of particles in a mono-disperse suspension[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2945-2958.
|
[3] |
DAVIS R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. International Journal of Thermophysics, 1986, 7(3): 609-620.
|
[4] |
LU S, LIN H. Effective conductivity of composites containing aligned spherical inclusions of finite conductivity[J]. Journal of Applied Physics, 1996, 79(9): 6761-6769.
|
[5] |
EINSTEIN A. Investigations on the Theory of the Brownian Movement[M]. New York: Dover, 1956.
|
[6] |
宣益民. 纳米流体能量传递理论与应用[J]. 中国科学: 技术科学, 44(3): 269-279.
|
|
XUAN Y M. An overview on nanofluids and applications[J]. Sci. Sin. Tech., 44(3): 269-279.
|
[7] |
WANG J J, ZHENG R T, GAO J W, et al. Heat conduction mechanisms in nanofluids and suspensions[J]. Nano Today, 2012, 7(2): 124-136.
|
[8] |
宣益民, 胡卫峰, 李强. 纳米流体的聚集结构和热导率模拟[J]. 工程热物理学报, 2002, 23(2): 206-208.
|
|
XUAN Y M, HU W F, LI Q. Simulations of structure and thermal conductivity of nanofluids[J]. Journal of Engineering Thermophysics, 2002, 23(2): 206-208.
|
[9] |
王补宣, 盛文彦. 纳米流体热导率的团簇宏观分析模型[J]. 自然科学进展, 2007, 17(7): 984-988.
|
|
WANG B X, SHENG W Y. Cluster macro analysis model of nanofluids conductivity[J]. Progress in Natural Science, 2007, 17(7): 984-988.
|
[10] |
YU W, CHOI S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model[J]. Journal of Nanoparticle Research, 2003, 6(4): 355-361.
|
[11] |
XIE H, FU M, ZHANG X. Effect of interfacial nanolayer on effective thermal conductivity of naooparticle-fluid mixture[J]. International Journal of Heat and Mass Transfer, 2005, 48(14): 2926-2932.
|
[12] |
APLIPOUR R, JAFARI A, MIZAEE M, et al. The direct effect of interfacial nanolayers on thermal conductivity of nanofluids[J]. Heat Mass Transfer, 2014, 50(12): 1727-1735.
|
[13] |
徐伟, 陈思嘉, 何燕, 等. 热管技术在余热回收中的应用研究进展[J]. 广东化工, 2007, 34(2): 40-42.
|
|
XU W, CHEN S J, HE Y, et al. Advances in applications research of heat pipe technique in waste heat recovery[J]. Guangdong Chemical Industry, 2007, 34(2): 40-42.
|
[14] |
王爱辉, 罗高乔, 汪韩送. 重力式热管空调机组运行特性试验研究[J]. 制冷技术, 2013, 33(2): 14-16.
|
|
WANG A H, LUO G Q, WANG H S. Experimental investigation of operating characteristic of two-phase closed thermosyphon type air conditioning unit[J]. Refrigeration Technology, 2013, 33(2): 14-16.
|
[15] |
赵安林. 重力热管散热器实验研究[D]. 重庆: 重庆大学, 2002.
|
|
ZHAO A L. Experimental study on gravity heat pipe radiator[D]. Chongqing: Chongqing University, 2002.
|
[16] |
郭广亮, 刘振华. 碳纳米管悬浮液强化小型重力型热管换热特性[J]. 化工学报, 2007, 58(12): 3006-3010.
|
|
GUO G L, LIU Z H. Heat transfer enhancement of small thermosyphon using carbon nanotube suspensions[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(12): 3006-3010.
|
[17] |
宫玉英, 朱保杰, 刘宗明, 等. SiO2-水纳米流体热管传热性能的研究[J]. 化工机械, 2013, 40(3): 302-305.
|
|
GONG Y Y, ZHU B J, LIU Z M, et al. Study on heat transfer performance of SiO2-DW nanofluids heat pipe[J]. Chemical Machinery, 2013, 40(3): 302-305.
|
[18] |
NOIE S, HERIS S Z, KAHANI M, et al. Heat transfer enhancement using Al2O3-DW nanofluids in a two-phase closed thermosyphon[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 700-705.
|
[19] |
周根明, 周少华, 赵忠超, 等. 纳米流体重力热管启动性能的试验研究[J]. 江苏科技大学学报, 2013, 27(4): 376-380.
|
|
ZHOU G M, ZHOU S H, ZHAO Z C, et al. Experimental study of start-up gravity heat pipe filled with nanofluids[J]. Journal of Jiangsu University of Science and Technology, 2013, 27(4): 376-380.
|
[20] |
周庆祥, 肖军平, 汪卫东, 等. 碳纳米管应用研究进展[J]. 化工进展, 2006, 25(7): 750-754.
|
|
ZHOU Q X, XIAO J P, WANG W D, et al. Progress of the application of carbon nanotubes[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 750-754.
|
[21] |
薛怀生, 樊建人, 胡亚才, 等. 碳纳米管悬浮液在重力热管中的沸腾特性[J]. 化工学报, 2006, 57(11): 2562-2567.
|
|
XUE H S, FAN J R, HU Y C, et al. Boiling characteristics of carbon nanotube suspension in gravity-assisted thermosyphon[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(11): 2562-2567.
|
[22] |
XUE Q Z. Model for thermal conductivity of carbon nanotube-based composites[J]. Physica B, 2005, 368(4): 302-307.
|
[23] |
HASHIMOTO T, FUJIMURA M, KAWAI H. Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions[J]. Macromolecules, 1974, 13(3): 660-669.
|
[24] |
YU C, RICHTER A, DATTA A, et al. Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study[J]. Physica B, 2000, 283(1/2/3): 27-31.
|
[25] |
XUE L, KEBLINSKI P, PHILLPOT S, et al. Effect of liquid layering at the liquid-solid interface on thermaltransport[J]. Int. J. Heat Mass Transf., 2004, 47(19/20): 4277-4284.
|
[26] |
CAO J X, YAN X H, XIAO Y, et al. Electronic transport properties of metallic carbon nanotubes[J]. Phys. Rev. B, 2003, 12(12):1440-1444.
|
[27] |
CHE J W, CAGIN T, GODDARD W. Thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2000, 11(2): 2083-2085.
|
[28] |
ZHANG W, ZHU Z, WANG F, et al. Chirality dependence of the thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2004, 15(8): 936-939.
|
[29] |
李庆威. 碳纳米管热传导研究[D]. 北京: 清华大学, 2011.
|
|
LI Q W. Study on heat conduction of carbon nanotubes[D]. Beijing: Tsinghua University, 2011.
|
[30] |
向军, 李菊香. 纳米悬浮液热虹吸管的传热性能试验研究[J]. 热能动力工程, 2010, 25(2): 190-196.
|
|
XIANG J, LI J X. Experimental study on heat transfer performance of thermosyphon[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25(2): 190-196.
|