化工学报 ›› 2017, Vol. 68 ›› Issue (8): 3056-3063.DOI: 10.11949/j.issn.0438-1157.20170123
曾明国, 李永生, 赵炀, 杜鑫
收稿日期:
2017-02-07
修回日期:
2017-04-22
出版日期:
2017-08-05
发布日期:
2017-05-19
通讯作者:
李永生
ZENG Mingguo, LI Yongsheng, ZHAO Yang, DU Xin
Received:
2017-02-07
Revised:
2017-04-22
Online:
2017-08-05
Published:
2017-05-19
摘要:
基于Mo(Ⅵ)-抗坏血酸、Co(Ⅱ)-KSCN反应体系和流动注射光度法,建立了一个全新的催化剂浸渍液中超高浓度CoO/MoO3的同时测定系统。研究发现:Co(Ⅱ)与KSCN络合物是由K2Co(SCN)4和K4Co(SCN)6构成,利用后者可定量Co(Ⅱ);Co(Ⅱ)对Mo(Ⅵ)-抗坏血酸反应有抑制作用,会干扰Mo(Ⅵ)测定;本研究利用Co(Ⅱ)的抑制作用,人为在测Mo(Ⅵ)的显色剂中加入一定量的硝酸钴,解决了该干扰问题。另外,对测定Co(Ⅱ)/Mo(Ⅵ)用的显色剂中的成分及浓度、进样体积、反应温度等相关影响因素进行了优选,得到的结果是:测定Mo(Ⅵ)的显色剂由15%(质量分数)抗坏血酸、10 g·L-1硝酸钴(以CoO计)及0.1 mol·L-1硫酸组成,测定Co(Ⅱ)的显色剂由37.5% KSCN、0.1 mol·L-1 NaAc-HAc(pH 5.8)组成;MoO3和CoO的测定范围分别为10~100 g·L-1和5~50 g·L-1,检出限分别为2.1 g·L-1和1.3 g·L-1,RSD<1.2%(n=11),回收率为98%~104%,分析速度为20样/小时。
中图分类号:
曾明国, 李永生, 赵炀, 杜鑫. 基于流动注射光度法同时测定催化剂浸渍液中CoO/MoO3[J]. 化工学报, 2017, 68(8): 3056-3063.
ZENG Mingguo, LI Yongsheng, ZHAO Yang, DU Xin. Simultaneous determination of CoO and MoO3 in catalyst impregnation solutions by flow injection spectrophotometry[J]. CIESC Journal, 2017, 68(8): 3056-3063.
[1] | FAN Y, SHI G, LIU H Y, et al. Selectivity enhancement of Co-Mo/Al2O3 FCC gasoline hydrodesulfurization catalysts via incorporation of mesoporous Si-SBA-15[J]. Fuel, 2011, 90(5):1717-1722. |
[2] | BAO J G, YANG Y Q, WANG W Y, et al. Preparation and hydrodeoxygenation properties of CoMo/ZrO2-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1):59-63. |
[3] | ZHANG K Y, LIU A H, HAO G Y, et al. Application of CoMo/Al2O3 catalyst prepared by wet-mixing kneading method in hydroconversion of Claus reaction tail gas[J]. Petrochemical Technology, 2005, 34(11):1095-1098. |
[4] | ZHANG Y F, ZHANG G J, ZHAO Y Q, et al. Ce-K-promoted Co-Mo/Al2O3 catalysts for the water gas shift reaction[J]. International Journal of Hydrogen Energy, 2012, 37(8):6363-6371. |
[5] | TSUJI Y, KITANO M, KISHIDA K, et al. Ammonia synthesis over Co-Mo alloy nanoparticle catalyst prepared via sodium naphthalenide-driven reduction[J]. Chemical Communications, 2016, 52:14369-14372. |
[6] | PAPADOPOULOU C, VAKROS J, MATRALIS H K, et al. Preparation, characterization, and catalytic activity of CoMo/γ-Al2O3 catalysts prepared by equilibrium deposition filtration and conventional impregnation techniques[J]. Journal of Colloid and Interface Science, 2004, 274(1):159-166. |
[7] | NIKULSHIN P A, MOZHAEV A V, PIMERZIN A A. CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate:effect of Co/Mo ratio[J]. Fuel, 2012, 100:24-33. |
[8] | CHAPARRO L, FERRER L, LEAL L, et al. A multisyringe flow-based system for kinetic-catalytic determination of cobalt(Ⅱ)[J]. Talanta, 2015, 133:94-99. |
[9] | NAKANO S, KAMAGUCHI C, HIRAKAWA N. Flow-injection catalytic spectrophotometic determination of molybdenum (Ⅵ) in plants using bromate oxidative coupling of p-hydrazinobensene sulfonic acid with N-(1-naphthyl)ethylene diamine[J]. Talanta, 2010, 81(3):786-791. |
[10] | MANSOURI A I, MIRZAEI M, AFZALI D, et al. Catalytic spectrophotometric determination of Mo(Ⅵ) in water samples using 4-amino-3-hydroxy-naphthalene sulfonic acid[J]. Arabian Journal of Chemistry, 2016, 9(S2):1105-1109. |
[11] | TEMEL N K, GURKAN R. Catalytic spectrophotometric determination of trace Mo(Ⅵ) in milk-based beverages in the presence of bromophenol blue and H2O2 using SDS as a sensitizer[J]. Analytical Methods, 2016, 8(33):6284-6292. |
[12] | ZHANG X F, ZHOU Q, LV Y, et al. Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector[J]. Microchemical Journal, 2010, 95(1):80-84. |
[13] | CHEN J Q, YU Y, ZHANG Z W, et al. NBS-rCDs(OH-) chemiluminescence analysis system for the determination of cobalt ions[J]. Diamond and Related Materials, 2015, 58:5-9. |
[14] | SHELLEY R U, ZACHHUBER B, SEDWICK P N, et al. Determination of total dissolved cobalt in UV-irradiated seawater using flow injection with chemiluminescence detection[J]. Limnology and Oceanography-Methods, 2010, 8:352-362. |
[15] | DU J X, LI J J, YANG L J, et al. Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential eletrolysis technique[J]. Analytica Chimica Acta, 2003, 481:239-244. |
[16] | 杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析, 2011, 31(11):24-28. YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis-flow injection chemiluminescence analysis[J]. Metallurgical Analysis, 2011, 31(11):24-28. |
[17] | GAO X F, IKEBUKURO K, LI Y S, et al. A novel assay for determination of sulfated bile acids in urine by use of flow-injection chemiluminescence principle with immobilized enzymes[J]. Laboratory Robotics and Automation (Wiley & Sons), 1997, 9(2):69-79. |
[18] | ZACHARIADIS G A, THEMELIS D G, KOSSEOGLOU D J, et al. Flame AAS and UV-VIS determination of cobalt, nickel and palladium using the synergetic effect of 2-benzoylpyridine-2-pyridylhydrazone and thiocyanate ions[J]. Talanta, 1998, 47(1):161-167. |
[19] | SHEGEFTI S, MEHDINIA A, SHEMIRANI F. Preconcentration of cobalt(Ⅱ) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS[J]. Microchimica Acta, 2016, 183(6):1963-1970. |
[20] | SHAMSIPUR M, HASHEMI O R, SAFAVI A. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid[J]. Analytical Sciences, 2005, 21(9):1063-1066. |
[21] | 邵从和. 电感耦合等离子体原子发射光谱法测定铜电积液中锑、铋、钴、镍和砷的含量[J]. 理化检验(化学分册), 2016, 52(6):691-694. SHAO C H. ICP-AES determination of stibium, bismuth, cobalt,nickel and arsenic in copper electrowinning solution[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(6):691-694. |
[22] | CANFRANC E, ABARCA A, SIERRA I. Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25:103-108. |
[23] | BOSCHETTI W, BORGES A R, DUARTE A T, et al. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS[J]. Analytical Methods, 2014, 6(12):4247-4256. |
[24] | KAI X M, CHENG L, JIE W, et al. Determination of W, Mo and other 8 elements in powder metallurgical materials by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2007, 27(12):2578-2580. |
[25] | 张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量[J]. 理化检验(化学分册), 2016, 52(10):1237-1240. ZHANG S L, HUANG Q H, HU X M, et al. ICP-AES determination of Si,Fe,Al,Ti,W,Sn and Mo in tungsten ores[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(10):1237-1240. |
[26] | 中国工业和信息化部. 有机硫加氢催化剂活性组分分析方法:HG/T 2515-2013[S]. 北京:化学工业出版社, 2014. Ministry of Industry and Information Technology of the People's Republic of China. Analytical method of the active composition in organic sulfur hydrogenation catalyst:HG/T 2515-2013[S]. Beijing:Chemical Industry Press, 2014. |
[27] | LI Y S, GAO X F. Flow Injection Analysis and Application for Chemistry Analysis[M]. Jilin:The Jilin People's Publisher, 2002:2-15. |
[28] | LI Y S, XING C X, YANG L L. Determination of trace-level sodium ion in water-steam system of power plants using an FIA/ISE method with an automatic penetration and alkalization apparatus[J]. Analytical Science, 2005, 21(3):273-279. |
[29] | 张红, 李永生, 李乔婧, 等. 流动注射-分光光度法测定钴钼催化剂浸渍液中高浓度钼离子[J]. 理化检验(化学分册), 2013, 49(6):713-719. ZHANG H, LI Y S, LI Q J, et al. FI-spectrophotometric determination of molybdenum of high concentration in maceration extract of cobalt-molybdenum catalysts[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6):713-719. |
[30] | 杜鑫, 李永生. 基于磷钼蓝反应测定钴-钼催化剂浸渍液中钼离子含量[J]. 理化检验(化学分册), 2015, 51(3):296-299. DU X, LI Y S. Determination of molybdenum ion in impregnation solution of Co-Mo catalysts based on the reaction of phosphorus molybdenum blue[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2015, 51(3):296-299. |
[31] | 孙宝莲, 李波, 王国栋, 等. 硫氰酸盐光度法测定氨浸渣中的钼[J]. 稀有金属材料与工程, 2009, 38(12):2253-2255. SUN B L, LI B, WANG G D, et al. Spectrophotometric determination of molybdenum in the ammonia leaching residue using thiocyanate[J]. Rare Metal Materials and Engineering, 2009, 38(12):2253-2255. |
[32] | LI Y S, MUO Y, XIE H M. Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry[J]. Analytica Chimica Acta, 2002, 455:315-325.of Colloid and Interface Science, 2004, 274(1): 159~166. |
[7] | NIKULSHIN P A, MOZHAEV A V, PIMERZIN A A. CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: Effect of Co/Mo ratio [J]. Fuel, 2012, 100: 24~33. |
[8] | CHAPARRO L, FERRER L, LEAL L, et al. A multisyringe flow-based system for kinetic-catalytic determination of cobalt(Ⅱ) [J]. Talanta, 2015, 133: 94~99. |
[9] | NAKANO S, KAMAGUCHI C, HIRAKAWA N. Flow-injection catalytic spectrophotometic determination of molybdenum (Ⅵ) in plants using bromate oxidative coupling of p-hydrazinobensene sulfonic acid with N-(1-naphthyl)ethylene diamine [J]. Talanta, 2010, 81(3): 786~791. |
[10] | MANSOURI A I, MIRZAEI M, AFZALI D, et al. Catalytic spectrophotometric determination of Mo(Ⅵ) in water samples using 4-amino-3-hydroxy-naphthalene sulfonic acid[J]. Arabian Journal of Chemistry, 2016, 9(S2): 1105~1109. |
[11] | TEMEL N K, GURKAN R. Catalytic spectrophotometric determination of trace Mo(Ⅵ) in milk-based beverages in the presence of bromophenol blue and H2O2 using SDS as a sensitizer[J]. Analytical Methods, 2016, 8(33): 6284~6292. |
[12] | ZHANG X F, ZHOU Q, LV Y, et al. Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector [J]. Microchemical Joural, 2010, 95(1): 80~84. |
[13] | CHEN J Q, YU Y, ZHANG Z W, et al. NBS-rCDs(OH-) chemiluminescence analysis system for the determination of cobalt ions[J]. Diamond and Related Materials, 2015, 58(none): 5~9. |
[14] | SHELLEY R U, ZACHHUBER B, SEDWICK P N, et al. Determination of total dissolved cobalt in UV-irradiated seawater using flow injection with chemiluminescence detection [J]. Limnology and Oceanography-methods, 2010, 8(none): 352~362. |
[15] | DU J X, LI J J, YANG L J, et al. Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential eletrolysis technique[J]. Analytica Chimica Acta, 2003, 481(none): 239~244. |
[16] | 杨玲娟, 谢天柱, 雷新有. 恒电位电解流动注射化学发光分析法测定钢铁中微量钼[J]. 冶金分析, 2011, 31(11): 24~28. YANG L J, XIE T Z, LEI X Y. Determination of micro molybdenum in steel by constant potential electrolysis - flow injection chemiluminescence analysis[J]. Metallurgical Analysis, 2011, 31(11): 24~28. |
[17] | GAO X F, IKEBUKURO K, LI Y S, et al. A novel assay for determination of sulfated bile acids in urine by use of flow-injection chemiluminescence principle with immobilized enzymes[J]. Laboratory Robotics and Automation (Wiley & Sons), 1997, 9(2): 69~79. |
[18] | ZACHARIADIS G A, THEMELIS D G, KOSSEOGLOU D J, et al. Flame AAS and UV-ⅥS determination of cobalt, nickel and palladium using the synergetic effect of 2-benzoylpyridine-2-pyridylhydrazone and thiocyanate ions [J]. Talanta, 1998, 47(1): 161~167. |
[19] | SHEGEFTI S, MEHDINIA A, SHEMIRANI F. Preconcentration of cobalt(Ⅱ) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS[J]. Microchimica Acta, 2016. 183(6): 1963~1970. |
[20] | SHAMSIPUR M, HASHEMI O R, SAFAⅥ A. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid[J]. Analytical Sciences, 2005, 21(9): 1063~1066. |
[21] | 邵从和. 电感耦合等离子体原子发射光谱法测定铜电积液中锑、铋、钴、镍和砷的含量[J]. 理化检验(化学分册), 2016, 52(6): 691~694. SHAO C H. ICP-AES Determination of Stibium, Bismuth, Cobalt,Nickel and Arsenic in Copper Electrowinning Solution[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(6): 691~694. |
[22] | CANFRANC E, ABARCA A, SIERRA I. Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing [J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 25(none): 103~108. |
[23] | BOSCHETTI W, BORGES A R, DUARTE A T, et al. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS[J]. Analytical Methods, 2014, 6(12): 4247~4256. |
[24] | KAI X M, CHENG L, JIE W, et al. Determination of W, Mo and other 8 elements in powder metallurgical materials by ICP-AES [J]. Spectroscopy and Spectral Analysis, 2007, 27(12): 2578~2580. |
[25] | 张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量简[J]. 理化检验(化学分册), 2016, 52(10): 1237~1240. ZHANG S L, HUANG Q H, HU X M, et al. ICP-AES Determination of Si,Fe,Al,Ti,W,Sn and Mo in Tungsten Ores[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2016, 52(10): 1237~1240. |
[26] | 中国工业和信息化部. 有机硫加氢催化剂活性组分分析方法: HG/T 2515-2013[S]. 北京: 化学工业出版社, 2014. Ministry of Industry and Information Technology of the People's Republic of China. Analytical method of the active composition in organic sulfur hydrogenation catalyst: HG/T 2515-2013[S]. Beijing: Chemical industry press, 2014. |
[27] | LI Y S, GAO X F. Flow injection analysis and application for chemistry analysis [M]. Jilin: The Jilin People's Publisher, 2002: 2~15. |
[28] | LI Y S, XING C X, YANG L L. Determination of trace-level sodium ion in water-steam system of power plants using an FIA/ISE method with an automatic penetration and alkalization apparatus [J]. Analytical Science, 2005, 21(3), 273~279. |
[29] | 张红, 李永生, 李乔婧, 等. 流动注射-分光光度法测定钴钼催化剂浸渍液中高浓度钼离子[J]. 理化检验(化学分册), 2013, 49(6): 713~719.ZHANG H, LI Y S, LI Q J, et al. FI-spectrophotometric determination of molybdenum of high concentration in maceration extract of cobalt-molybdenum catalysts [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6): 713~719. |
[30] | 杜鑫, 李永生. 基于磷钼蓝反应测定钴-钼催化剂浸渍液中钼离子含量[J]. 理化检验(化学分册), 2015, 51(3): 296~299.DU X, LI Y S. Determination of molybdenum ion in impregnation solution of Co-Mo catalysts based on the reaction of phosphorus molybdenum blue [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2015, 51(3): 296~299. |
[31] | 孙宝莲, 李波, 王国栋, 等. 硫氰酸盐光度法测定氨浸渣中的钼[J]. 稀有金属材料与工程, 2009, 38(12): 2253~2255. SUN B L, LI B, WANG G D, et al. Spectrophotometric determination of molybdenum in the ammonia leaching residue using thiocyanate [J]. Rare Metal Materials and Engineering, 2009, 38(12): 2253~2255. |
[32] | LI Y S, Muo Y, XIE H M, Simultaneous determination of silicate and phosphate in boiler water at power plants based on series flow cells by using flow injection spectrophotometry [J]. Analytica Chimica Acta, 2002, 455: 315-325. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[15] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||