[1] |
MANSUROV V, MALIN T, GALITSYN Y, et al. Graphene-like AlN layer formation on (111)Si surface by ammonia molecular beam epitaxy[J]. Journal of Crystal Growth, 2015, 428(1):93-97.
|
[2] |
TSIPAS P, KASSAVETIS S, TSOUTSOU D, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111)[J]. Applied Physics Letter, 2013, 103(25):251605-251606.
|
[3] |
ALMEIDA E F D, MOTA F D B. Defects in hexagonal-AlN sheets by first-principles calculations[J]. European Physical Journal B, 2012, 85(1):1-9.
|
[4] |
ZHUANG H L, SINGH A K, HENNIG R G. Computational discovery of single-layer Ⅲ-Ⅴ materials[J]. Physical Review B Condensed Matter, 2013, 87(16):2095-2100.
|
[5] |
SAHIN H, CAHANGIROV S, TOPSAKAL M, et al. Monolayer honeycomb structures of group-Ⅳ elements and Ⅲ-Ⅴ binary compounds:first-principles calculations[J]. Physical Review B, 2009, 80(15):155453-155473.
|
[6] |
TUNGARE M,SHI Y F,TRIPATHI N,et al. A Tersoff-based interatomic potential for wurtzite AlN[J]. Physica Status Solidi A, 2011, 208(7):1569-1572.
|
[7] |
MÜLLER-PLATHE F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. Journal of Chemical Physics, 1997, 106(14):2878-2891.
|
[8] |
LINDSAY L, BROIDO D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene[J]. Physical Review B, 2010, 81(20):205441-205448.
|
[9] |
ZHANG X, JIANG J. Thermal conductivity of zeolitic imidazolate framework:a molecular simulation study[J]. Journal of Physical Chemistry C, 2013, 117(11):18441-18447.
|
[10] |
LIN S, BUEHLER M J. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces[J]. Nanotechnology, 2013, 24(16):165702-165722.
|
[11] |
KONG L T. Phonon dispersion measured directly from molecular dynamics simulations[J]. Computer Physics Communications, 2011, 182(10):2201-2207.
|
[12] |
WIGNER E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5):749-750.
|
[13] |
MUNOZ E, LU J, Yakobson B I. Ballistic thermal conductance of graphene ribbons[J]. Nano Letters, 2010, 10(5):1652-1656.
|
[14] |
WANG M, LIN S. Ballistic thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path[J]. Scientific Reports, 2015, 5(1):18122-18143.
|
[15] |
ACIKKALP E. Entransy analysis of irreversible heat pump using Newton and Dulong-Petit heat transfer laws and relations with its performance[J]. Energy Conversion and Management, 2014, 86(1):792-800.
|
[16] |
JNAWALI G, HUANG M, HSU J F, et al. Room-temperature quantum transport signatures in graphene/LaAlO3/SrTiO3 heterostructures[J]. Advanced Materials, 2017, 29(9):3488-3499.
|
[17] |
郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法[J]. 物理学报, 2014, 63(7):76501-76511. ZHENG B Y, DONG H L, CHEN F F. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction[J]. Acta Physica Sinica, 2014, 63(7):76501-76511.
|
[18] |
ZABEL H. Phonons in layered compounds[J]. Journal of Physics Condensed Matter, 2001, 13(34):7679-7690.
|
[19] |
LINDSAY L, BROIDO D A, REINECKE T L. Ab initio thermal transport in compound semiconductors[J]. Physical Review B Condensed Matter, 2013, 87(16):1948-1954.
|
[20] |
BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8):569-581.
|
[21] |
BUNGARO C, RAPCEWICZ K, BERNHOLC J. Ab initio phonon dispersions of wurtzite AlN, GaN, and InN[J]. Physical Review B, 2000, 61(10):6720-6725.
|
[22] |
KLEMENS P G. The thermal conductivity of dielectric solids at low temperatures (theoretical)[J]. Advances in Physics, 1953, 2(5):103-140.
|
[23] |
ONG Z Y, POP E, SHIOMI J. Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica[J]. Physical Review B Condensed Matter, 2011, 84(16):165418-165419.
|
[24] |
BALANDIN A A, NIKA D L. Phononics in low-dimensional materials[J]. Materials Today, 2012, 15(6):266-275
|
[25] |
ZIMAN J M. Electrons and phonons:the theory of transport phenomena in solids[J]. Sirirajmedj Com, 2001, 133(1):212-235.
|
[26] |
LI W, CARRETE J, MADSEN G K H, et al. Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity[J]. Physical Review B, 2016, 93(20):205-213.
|
[27] |
REGNER K T, SELLAN D P, SU Z, et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermosreflectance[J]. Nature communications, 2013, 4(1):1640-1662.
|
[28] |
ZHANG X, XIE H, HU M, et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential[J]. Physical Review B, 2014, 89(5):054310.
|
[29] |
陈刚. 纳米尺度能量输运和转换:对电子、分子、声子和光子的统一处理[M]. 周怀春, 译. 北京:清华大学出版社, 2014:73. CHEN G. Nanoscale Energy Transport and Conversion:A Parallel Treatment of Electrons, Molecules, Phonons, and Photons[M]. ZHOU H C, trans. Beijing:Tsinghua University Press, 2014:73.
|
[30] |
LIN S, BUEHLER M J. Thermal transport in monolayer graphene oxide:atomistic insights into phonon engineering through surface chemistry[J]. Carbon, 2014, 77(1):351-359.
|