[1] |
郑建祥, 许帅, 王京阳,等. 基于微分代数积分矩量法的聚并器超细粒子聚团研究[J]. 化工学报, 2017, 68(1):119-128. ZHENG J X, XU S,WANG J Y, et al. Simulation of ultrafine particle aggregation in aggregation device by differential-algebraic quadrature method of moments[J]. CIESC Journal, 2017, 68(1):119-128.
|
[2] |
王铁峰. 气液-浆-反应器流体力学行为的实验研究和数值模拟[D]. 北京:清华大学, 2004. WANG T F. Experimental study and numerical simulation on the hydrodynamics in gas-liquid (slurry) reactors[D]. Beijing:Tsinghua University, 2004.
|
[3] |
BRIESEN H. Simulation of crystal size and shape by means of a reduced two-dimensional population balance model[J]. Chemical Engineering Science, 2006, 61(1):104-112.
|
[4] |
LEE K F, DOSTA M, MCGUIRE A D, et al. Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method[J]. Computers & Chemical Engineering, 2017, 99:171-184.
|
[5] |
WANG B, MOSBACH S, SCHMUTZHARD S, et al. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model[J]. Applied Energy, 2016, 163:154-166.
|
[6] |
DUCOSTE J. A two-scale PBM for modeling turbulent flocculation in water treatment processes[J]. Chemical Engineering Science, 2002, 57(12):2157-2168.
|
[7] |
NOPENS I, KOEGST T, MAHIEU K, et al. PBM and activated sludge flocculation:from experimental data to calibrated model[J]. AIChE Journal, 2005, 51(5):1548-1557.
|
[8] |
DING A, HOUNSLOW M J, BIGGS C A. Population balance modelling of activated sludge flocculation:investigating the size dependence of aggregation, breakage and collision efficiency[J]. Chemical Engineering Science, 2006, 61(1):63-74.
|
[9] |
YEOW Y L, LIOW J, LEONG Y. A general procedure for obtaining the evolving particle-size distribution of flocculating suspensions[J]. AIChE Journal, 2012, 58(10):3043-3053.
|
[10] |
JELDRES R I, CONCHA F, TOLEDO P G. Population balance modelling of particle flocculation with attention to aggregate restructuring and permeability[J]. Advances in Colloid & Interface Science, 2015, 224:62.
|
[11] |
LI Z L, LU P L, ZHANG D J, et al. Population balance modeling of activated sludge flocculation:investigating the influence of extracellular polymeric substances (EPS) content and zeta potential on flocculation dynamics[J]. Separation & Purification Technology, 2016, 162:91-100.
|
[12] |
JARVIS P, JEFFERSON B, GREGORY J, et al. A review of floc strength and breakage[J]. Water Research, 2005, 39(14):3121-3137.
|
[13] |
YUAN Y, FARNOOD R R. Strength and breakage of activated sludge flocs[J]. Powder Technology, 2010, 199(2):111-119.
|
[14] |
SCHUETZ S, PIESCHE M. A model of the coagulation process with solid particles and flocs in a turbulent flow[J]. Chemical Engineering Science, 2002, 57(20):4357-4368.
|
[15] |
SPICER P T, PRATSINIS S E. Coagulation and fragmentation:universal steady-state particle-size distribution[J]. AIChE Journal, 1996, 42(6):1612-1620.
|
[16] |
ZHANG J J, LI X Y. Modeling particle-size distribution dynamics in a flocculation system[J]. AIChE Journal, 2003, 49(7):1870-1882.
|
[17] |
SERRA T, CASAMITJANA X. Modelling the aggregation and break-up of fractal aggregates in a shear flow[J]. Flow, Turbulence and Combustion, 1997, 59(2):255-268.
|
[18] |
MAGGI F, MIETTA F, WINTERWERP J C. Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment[J]. Journal of Hydrology, 2007, 343(1):43-55.
|
[19] |
苏军伟, 顾兆林, XU X Y. 离散相系统种群平衡模型的求解算法[J]. 中国科学:化学, 2010, 40(2):144-160. SU J W, GU Z L, XU X Y. Advances of solution methods of population balance equation for disperse phase system[J]. Scientia Sinica Chimica, 2010, 40(2):144-160.
|
[20] |
LI Z L, ZHOU Z E, ZHANG S, et al. Comparison of the accuracy and performance of different numbers of classes in discretised solution method for population balance model[J]. International Journal of Chemical Engineering, 2016, 2:1-6.
|
[21] |
RAMKRISHNA D. Population Balances:Theory and Applications to Particulate Systems in Engineering[M]. London:Academic Press, 2000.
|
[22] |
KUMAR S, RAMKRISHNA D. On the solution of population balance equations by discretization(Ⅱ):A fixed pivot technique[J]. Chemical Engineering Science, 1996, 51(8):1311-1332.
|
[23] |
THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling:a review[J]. Water Research, 1999, 33(7):1579-1592.
|
[24] |
LI X Y, LOGAN B. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid[J]. Environmental Science & Technology, 1997, 31(4):1237-1242.
|
[25] |
BIGGS C A, LANT P A. Modelling activated sludge flocculation using population balances[J]. Powder Technology, 2002, 124(3):201-211.
|
[26] |
MIETTA F, CHASSAGNE C, VERNEY R, et al. On the behavior of mud floc size distribution:model calibration and model behavior[J]. Ocean Dynamics, 2011, 61(2):257-271.
|
[27] |
FLESCH J C, SPICER P T, PRATSINIS S E. Laminar and turbulent shear-induced flocculation of fractal aggregates[J]. AIChE Journal, 1999, 45(5):1114-1124.
|
[28] |
LI Z L, ZHANG D J, LU P L, et al. Population balance model and calibration method for simulating the time evolution of floc size distribution of activated sludge flocculation[J]. Desalination and Water Treatment, 2017, 67:41-50.
|
[29] |
MAGGI F. Flocculation dynamics of cohesive sediment[D]. Delft:Delft University of Technology, 2005.
|
[30] |
李振亮, 张代钧, 卢培利,等. 活性污泥粒度分布与分形维数的影响因素[J]. 环境科学, 2013, 34(10):3975-3980. LI Z L, ZHANG D J, LU P L, et al. Influencing factors of floc size distribution and fractal dimension of activated sludge[J]. Environmental Science, 2013, 34(10):3975-3980.
|
[31] |
WILEN B M, JIN B, LANT P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003, 37(9):2127-39.
|
[32] |
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances, 2010, 28(6):882-894.
|