[1] |
Ojovan M I, Lee W E, Sobolev I A, et al. Thermochemical processing using powder metal fuels of radioactive and hazardous waste[J]. Journal of Process Mechanical Engineering, 2004, 218(4):261-269.
|
[2] |
殷声. 燃烧合成[M]. 北京:冶金工业出版社, 2004:1-45. YIN S. Combustion Synthesis[M]. Beijing:Metallurgic Industry Press, 2004:1-45.
|
[3] |
Galina X, George V. An overview of some environmental applications of self-propagating high-temperature synthesis[J]. Advances in Environmental Research, 2001, 5:117-128.
|
[4] |
Ojovan M I, Lee W E. An Introduction to Nuclear Waste Immobilization[M]. London:Elsevier, 2005:229-232.
|
[5] |
Karlina O K, Varlackova G A, Ojovan M I, et al. Conditioning of radioactive ash residue in a wave of solid-phase exothermal reactions[J]. Atomic Energy, 2001, 90(1):43-48.
|
[6] |
张瑞珠, 郭志猛, 高峰. 用SHS将核废物固定于类矿石[J]. 稀有金属, 2005, 29(1):25-29. ZHANG R Z, GUO Z M, GAO F. Solidification of HLW into mineral-like materials by SHS method[J]. Chinese Journal of Rare Metals, 2005, 29(1):25-29.
|
[7] |
Barinova T V, Borovinskaya I P. SHS immobilization of radioactive wastes[J]. Key Engineering Materials, 2002, 217:193-200.
|
[8] |
路新, 郭志猛, 罗上庚, 等. 自蔓延高温合成固定放射性废物[J]. 硅酸盐学报, 2003, 31(2):205-208. LU X, GUO Z M, LUO S G, et al. Self-propagating high temperature synthesis of radioactive waste immobilization[J]. Journal of the Chinese Ceramic Society, 2003, 31(2):205-208.
|
[9] |
Ojovan M I, Lee W E. Self sustaining vitrification for immobilisation of radioactive and toxic waste[J]. Glass Technology, 2003, 44(6):218-224.
|
[10] |
Glagovsky E M, Kouprine A V, Pelevine L F. Study of matrices synthesised by a self-propagating high-temperature synthesis[J]. Czechoslovak Journal of Physics, 2002, 12(53) (Suppl. A):A657-A663.
|
[11] |
张瑞珠. 利用自蔓延高温合成技术固化放射性废物[D]. 北京:北京科技大学, 2005. ZHANG R Z. Self-propagation high-temperature synthesis for radioactive waste immobilization[D]. Beijing:University of Science and Technology Beijing, 2005.
|
[12] |
Glagovskii E M, Yudintsev S V, Kuprin A V, et al. Crystalline host phases for actinides, obtained by self-propagating high-temperature synthesis[J]. Radiochemistry, 2001, 43(6):632-638.
|
[13] |
张瑞珠, 郭志猛, 贾成广, 等. 自蔓延高温合成钙钛矿型人造岩石固化体[J]. 北京科技大学学报, 2004, 26(5):485-488. ZHANG R Z, GUO Z M, JIA C G, et al. Synthesis of perovskite synroc by SHS for immobilization of high level radioactive[J]. Journal of University of Science and Technology Beijing, 2004, 26(5):485-488.
|
[14] |
Barinova T V, Borovinskaya I P, Ratnikov V I, et al. Self-propagating high-temperature synthesis for immobilization of high-level waste in mineral-like ceramics(Ⅰ):Synthesis and study of titanate ceramics based on perovskite and zirconolite[J]. Radiochemistry, 2008, 50(3):316-320.
|
[15] |
Barinova T V, Borovinskaya I P, Ratnikov V I, et al. Self-propagating high-temperature synthesis for immobilization of high-level waste in mineral-like ceramics(Ⅱ):Immobilization of cesium in ceramics based on perovskite and zirconolite[J]. Radiochemistry, 2008, 50(3):321-323.
|
[16] |
Vinokurov S E, Kulyako Y M, Perevalov S A, et al. Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synthesis[J]. Comptes Rendus Chimie, 2007, 10:1128-1130.
|
[17] |
Glagovskii E M, Yudintsev S V, et al. Crystalline host phases for actinides obtained by self-propagating high-temperature synthesis[J]. Radiochemistry, 2001, 43(6):557-562.
|
[18] |
徐亚红, 徐中慧, 蒋灶, 等. 镁热剂/铝热剂体系SHS法固化处理无钙焙烧铬渣[J]. 化工学报, 2017, 68(11):4309-4315. XU Y H, XU Z H, JIANG Z, et al. Immobilization of COPR from lime-free roasting process by self-propagating high-temperature synthesis of Al-Fe2O3 and Mg-Fe2O3 systems[J]. CIESC Journal, 2017, 68(11):4309-4315.
|
[19] |
娄光普, 赵忠民. 热燃烧温度对超重力场自蔓延离心熔铸TiB2-TiC-(Ti, W)C组织及性能的影响[J]. 硅酸盐学报, 2016, 44(12):1724-1728. LOU G P, ZHAO Z M. Effects of adiabatic temperature on microstructure and properties of TiB2-TiC-(Ti, W)C prepared by combustion synthesis in high-gravity field[J]. Journal of the Chinese Ceramic Society, 2016, 44(12):1724-1728.
|
[20] |
ZHU C C, ZHU J, WU H, et al. Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles[J]. Rare Metals, 2015, 34(2):107-110.
|
[21] |
尹丹凤. 自蔓延高温合成金属钒的热力学研究[J]. 有色金属(冶炼部分), 2014, (1):37-39. YIN D F. Study on thermodynamics of vanadium self-propagating high-temperature synthesis[J]. Nonferrous Metals(Extractive Metallurgy), 2014, (1):37-39.
|
[22] |
王丹, 周小平. 机械合金化制备Al2O3-AlB12陶瓷粉体的热力学分析[J]. 稀有金属, 2016, 40(4):334-338. WANG D, ZHOU X P. Thermodynamic analysis of Al2O3-AlB12 ceramic powder prepared by mechanical alloying[J]. Chinese Journal of Rare Metals, 2016, 40(4):334-338.
|
[23] |
LI Z R, FENG G J, WANG S Y, et al. High-efficiency joining of Cf/Al composites and TiAl alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis[J]. Journal of Materials Science and Technology, 2016, 32:1111-1116.
|
[24] |
毛仙鹤, 秦志桂, 武斌. 铝热剂SHS合成模拟核废物固化产物的组成结构分析[J]. 硅酸盐学报, 2010, 38(2):310-315. MAO X H, QIN Z G, WU B. Composition and structure analysis of simulated radioactive waste form immobilized with thermit by self-propagating high temperature synthesis[J]. Journal of the Chinese Ceramic Society, 2010, 38(2):310-315.
|
[25] |
王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真:多物理场数值分析技术[M]. 北京:电子工业出版社, 2012. WANG G, AN L. COMSOL Multiphysics Engineering Practice and Theory Simulation:Multi-physics Numerical Analysis Technology[M]. Beijing:Electronics Industry Press, 2012.
|
[26] |
王百惠, 夏卫生, 吴丰顺, 等. Al/Ni薄膜自蔓延反应连接温度场模拟及分析[J]. 电子工艺技术, 2014, 35(1):6-10. WANG B H, XIA W S, WU F S, et al. Simulation and analysis of temperature field of self-propagating reaction connection based on Al/Ni film[J]. Electronics Process Technology, 2014, 35(1):6-10.
|
[27] |
李刚, 金红梅, 韩凤, 等. Ni75Al25激光诱导自蔓延烧结合金温度场数值模拟[J]. 材料热处理学报, 2014, 35(3):218-222. LI G, JIN H M, HAN F, et al. Numerical simulation of temperature field of Ni75Al25 alloy prepared by laser induced self-propagating sintering[J]. Transaction of Materials and Heat Treatment, 2014, 35(3):218-222.
|
[28] |
许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18):184701(1)-184701(24). XU A G, ZHANG G C, YING Y J. Progress of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18):184701(1)-184701(24).
|
[29] |
YING G B, HE X D, DU S Y, et al. Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti-Cr-Al-C systems[J]. Rare Metals, 2014, 33(5):527-533.
|
[30] |
叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京:冶金工业出版社. 2002. YE D L, HU J H. Handbook of Thermodynamic Data of Practical Inorganic Substances[M]. 2nd ed. Beijing:Metallurgical Industry Press, 2002.
|