[1] |
桑建新. 我国煤制天然气现状和未来产业链发展[J]. 煤炭经济研究, 2013, 33(10):27-32. SANG J X. Present status of coal to natural gas and future industrial chain development[J]. Coal Economic Research, 2013, 33(10):27-32.
|
[2] |
冯亮杰. 我国发展煤制天然气项目的分析探讨[J]. 化学工程, 2011, 39(8):86-89. FENG L J. Analysis and discussion on development of coal-to-natural gas project in China[J]. Chemical Engineering (China), 2011, 39(8):86-89.
|
[3] |
KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S M A. Production of synthetic natural gas (SNG) from coal and dry biomass-a technology review from 1950 to 2009[J]. Fuel, 2010, 89(8):1763-1783.
|
[4] |
GAO J J, LIU Q, GU F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
|
[5] |
ARNOLDY P, HEIJKANT J, BOK G, et al. Temperature-programmed sulfiding of MoO3/Al2O3 catalysts[J]. Journal of Catalysis, 1985, 92(1):35-55.
|
[6] |
MUIJSERS J, WEBER T, VANHARDEVELD R, et al. Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo-IV3-sulfur cluster compounds[J]. Journal of Catalysis, 1995, 157(2):698-705.
|
[7] |
USMAN K T, HIROMITSU I, OKAMOTO Y. Effect of boron addition on the surface structure of CoMo/Al2O3 catalysts[J]. Journal of Catalysis, 2007, 247(1):78-85.
|
[8] |
MEDICI L, PRINS R. The Influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts[J]. Journal of Catalysis, 1996, 163(1):38-49.
|
[9] |
SCHEFFER B, DE JONGE J C M, ARNOLDY P, et al. Temperature programmed sulfiding of CoO/MoO3/γ-Al2O3 catalysts[J]. Bulletin Des Sociétés Chimiques Belges, 2010, 93(8/9):751-762.
|
[10] |
WITTNEBEN V, SPRAFKE A, DIEMANN E, et al. Sulfur-edge X-ray absorption near edge spectra (XANES) of some thiometallates and thiometallato complexes[J]. Journal of Molecular Structure, 1989, 198(4):525-529.
|
[11] |
DE BOER M, DILLEN A, KONINGSBERGER D, et al. The structure of highly dispersed SiO2-supported molybdenum oxide catalysts during sulfidation[J]. Journal of Physical Chemistry, 1994, 98(32):7862-7870.
|
[12] |
JIANG M H, WANG B W, YAO Y Q, et al. Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Catalysis A:General, 2014, 469:89-97.
|
[13] |
JIANG M H, WANG B W, YAO Y Q, et al. Effect of sulfidation temperature on CoO-MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation[J]. Catalysis Science and Technology, 2013, 3(10):2793-2800.
|
[14] |
JIANG M H, WANG B W, LÜ J, et al. Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation[J]. Applied Catalysis A:General, 2013, 466:224-232.
|
[15] |
王保伟, 刘思含, 胡宗元, 等. 耐硫甲烷化中H2S浓度对MoO3/Al2O3和CoO-MoO3/Al2O3催化剂的影响[J]. 物理化学学报, 2015, 31(3):545-551. WANG B W, LIU S H, HU Z Y, et al. Effect of H2S concentration on MoO3/Al2O3 and CoO-MoO3/Al2O3 catalysts for sulfur-resistant methanation[J]. Acta Physico-Chimica Sinica, 2015, 31(3):545-551.
|
[16] |
LI Z H, LIU J, WANG H Y, et al. Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas[J]. Journal of Molecular Catalysis A:Chemical, 2013, 378(9):99-108.
|
[17] |
JIANG M H, WANG B W, YAO Y Q, et al. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Surface Science, 2013, 285(PARTB):267-277.
|
[18] |
WANG B W, DING G Z, SHANG Y G, et al. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Applied Catalysis A:General, 2012, 431/432:144-150.
|
[19] |
LI Z H, TIAN Y, HE J, et al. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J]. Journal of Energy Chemistry, 2014, 23(5):625-632.
|
[20] |
李振花, 张晓珊, 曲江磊, 等. 制备方法对钼基耐硫甲烷化催化剂性能的影响[J]. 化工学报, 68(1):129-135. LI Z H, ZHANG X S, QU J L, et al. Influence of preparation methods on Mo-based catalyst for sulfur-resistant methanation[J]. CIESC Journal, 68(1):129-135.
|
[21] |
RAYBAUD P, HAFNER J, KRESSE G, et al. Ab initio study of the H2-H2S/MoS2 gas-solid interface:the nature of the catalytically active sites[J]. Journal Catalysis, 2000, 189(1):129-146.
|
[22] |
LAURITSEN J V, HELVEG S. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts[J]. Journal Catalysis, 2001, 197(1):1-5.
|
[23] |
AFANASIEV P. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts[J]. Journal of Catalysis, 269(2):269-280.
|
[24] |
ZHOU T N, YIN H L, LIU Y Q, et al. Effect of phosphorus content on the active phase structure of NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry & Technology, 2010, 38(1):69-74.
|
[25] |
TEIMOURI A, NAJARI B, CHERMAHINI A, et al. Characterization and catalytic properties of molybdenum oxide catalysts supported on ZrO2-γ-Al2O3 for ammoxidation of toluene[J]. RSC Advances, 2014, 4(71):37679-37686.
|
[26] |
WANG S B, LU G Q M. CO2 reforming of methane on Ni catalysts:effects of the support phase and preparation technique[J]. Applied Catalysis B Environmental, 1998, 16(3):269-277.
|
[27] |
WILLIAMS C, EKERDT J, JEHNG J, et al. A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide[J]. Journal of Physical Chemistry, 1991, 95(22):8781-8791.
|
[28] |
GONZÁLEZ-CORTÉS S L, XIAO T C, COSTA P M F J, et al. Urea-organic matrix method:an alternative approach to prepare Co-MoS2/γ-Al2O3 HDS catalyst[J]. Applied Catalysis A:General, 2004, 270(1/2):209-222.
|
[29] |
LAMONIER C, MARTIN C, MAZURELLE J, et al. Molybdocobaltate cobalt salts:new starting materials for hydrotreating catalysts[J]. Applied Catalysis B Environmental, 2007, 70(1/2/3/4):548-556.
|