化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4577-4591.DOI: 10.11949/j.issn.0438-1157.20180627
柳璐, 张文, 王宇新
收稿日期:
2018-06-11
修回日期:
2018-08-14
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
王宇新
LIU Lu, ZHANG Wen, WANG Yuxin
Received:
2018-06-11
Revised:
2018-08-14
Online:
2018-11-05
Published:
2018-11-05
摘要:
石墨相氮化碳(g-C3N4)具有独特的电子结构和化学特性,作为非金属催化剂,近年来尤其在清洁和可持续能源领域显示了光明的应用前景,引起了相关领域研究人员的广泛关注。综述了g-C3N4纳米材料的可控制备及其在氧还原、光催化分解水制氢、二氧化碳还原、光固氮等能源催化重要方面的国内外近期进展,并讨论了此领域中的关键问题和未来的发展趋势。
中图分类号:
柳璐, 张文, 王宇新. 石墨相氮化碳的可控制备及其在能源催化中的应用[J]. 化工学报, 2018, 69(11): 4577-4591.
LIU Lu, ZHANG Wen, WANG Yuxin. Graphitic carbon nitride materials: controllable preparations and applications in energy catalysis[J]. CIESC Journal, 2018, 69(11): 4577-4591.
[1] | LIEBIG J. About some nitrogen compounds[J]. Ann. Pharm., 1834, 10:10. |
[2] | CAO S W, LOW J X, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13):2150-2176. |
[3] | ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Review, 2016, 116(12):7159-7329. |
[4] | FRANKLIN E C. The ammono carbonic acids[J]. Journal of the American Chemical Society, 1922, 44(3):486-509. |
[5] | THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41):4893-4908. |
[6] | ZHAO Z W, SUN Y J, DONG F. Graphitic carbon nitride based nanocomposites:a review[J]. Nanoscale, 2015, 7(1):15-37. |
[7] | ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials:controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5):6717-6731. |
[8] | GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Metal-free catalysis of sustainable Friedel-Crafts reactions:direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds[J]. Chemical Communications, 2006, (43):4530-4532. |
[9] | WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80. |
[10] | MAEDA K, WANG X, NISHIHARA Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. Journal of Physical Chemistry C, 2009, 113(12):4940-4947. |
[11] | YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17):10397-10401. |
[12] | WANG X C, MAEDA K, CHEN X F, et al. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131(5):1680-1681. |
[13] | SU Q, SUN J, WANG J Q, et al. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catalysis Science & Technology, 2014, 4(6):1556-1562. |
[14] | CHEN Z H, SUN P, FAN B, et al. In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity[J]. Journal of Physical Chemistry C, 2014, 118(15):7801-7807. |
[15] | XIAO J D, XIE Y B, NAWAZ F, et al. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst:a potential sunlight/O3/g-C3N4 method for efficient water decontamination[J]. Applied Catalysis B:Environmental, 2016, 181:420-428. |
[16] | 张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9):1865-1876. ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Physico-Chimica Sinica, 2013, 29(9):1865-1876. |
[17] | DONG X P, CHENG F X. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications[J]. Journal of Materials Chemistry A, 2015, 3(47):23642-23652. |
[18] | MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites:a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B:Environmental, 2016, 198:347-377. |
[19] | XU B T, AHMED M B, ZHOU J L, et al. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation:progress, limitations and future directions[J]. Science of the Total Environment, 2018, 633:546-559. |
[20] | ZHU B C, ZHANG L Y, CHENG B, et al. First-principle calculation study of tri-s-triazine-based g-C3N4:a review[J]. Applied Catalysis B:Environmental, 2018, 224:983-999. |
[21] | SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Journal of Materials Chemistry A, 2013, 1(21):6489-6496. |
[22] | NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22):4763-4770. |
[23] | LIU G G, WANG T, ZHANG H B, et al. Nature-inspired environmental "phosphorylation" boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation[J]. Angewandte Chemie International Edition, 2015, 54(46):13561-13565. |
[24] | SCHWINGHAMMER K, MESCH M B, DUPPEL V, et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution[J]. Journal of the American Chemical Society, 2014, 136(5):1730-1733. |
[25] | HAN Q, WANG B, GAO J, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2):2745-2751. |
[26] | YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17):2452-2456. |
[27] | ZHAO H X, YU H T, QUAN X, et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B:Environmental, 2014, 152/153:46-50. |
[28] | YU S Y, WEBSTER R D, ZHOU Y, et al. Ultrathin g-C3N4nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H2 production[J]. Catalysis Science & Technology, 2017, 7(10):2050-2056. |
[29] | TONG J C, ZHANG L, LI F, et al. An efficient top-down approach for the fabrication of large-aspect-ratio g-C3N4 nanosheets with enhanced photocatalytic activities[J]. Physical Chemistry Chemical Physics, 2015, 17(36):23532-23537. |
[30] | TONG J C, ZHANG L, LI F, et al. Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution[J]. RSC Advances, 2015, 5(107):88149-88153. |
[31] | CHENG F X, WANG H N, DONG X P. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route[J]. Chemical Communications, 2015, 51(33):7176-7179. |
[32] | XU J, ZHANG L W, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46):14766-14772. |
[33] | LI Y, ZHOU Y Z, ZENG W W, et al. Acid-exfoliated g-C3N4 nanosheets coated silver nanoparticles with tunable loading:an efficient catalyst for visible light photocatalytic reaction[J]. ChemistrySelect, 2017, 2(31):9947-9952. |
[34] | YANG Y X, GENG L, GUO Y N, et al. Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C3N4 nanosheets[J]. Applied Surface Science, 2017, 425:535-546. |
[35] | MA L T, FAN H Q, WANG J, et al. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance[J]. Applied Catalysis B:Environmental, 2016, 190:93-102. |
[36] | LI Y, WANG M Q, BAO S J, et al. Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity[J]. Ceramics International, 2016, 42(16):18521-18528. |
[37] | QIU P X, CHEN H, XU C M, et al. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst[J]. Journal of Materials Chemistry A, 2015, 3(48):24237-24244. |
[38] | CHEN X F, ZHANG L G, ZHANG B, et al. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water[J]. Scientific Reports, 2016, 6:28558-28570. |
[39] | SHE X J, XU H, XU Y G, et al. Exfoliated graphene-like carbon nitride in organic solvents:enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J]. Journal of Materials Chemistry A, 2014, 2(8):2563-2570. |
[40] | COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571. |
[41] | ZHENG Y, YU Z H, OU H H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials, 2018, 28(10):1705407-1705416. |
[42] | KUMAR S, SURENDAR T, KUMAR B, et al. Synthesis of highly efficient and recyclable visible-light responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. RSC Advances, 2014, 4(16):8132-8137. |
[43] | ZHAO H X, YU H T, QUAN X, et al. Atomic single layer graphitic-C3N4:fabrication and its high photocatalytic performance under visible light irradiation[J]. RSC Advances, 2014, 4(2):624-628. |
[44] | MA L T, FAN H Q, LI M M, et al. A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light[J]. Journal of Materials Chemistry A, 2015, 3(44):22404-22412. |
[45] | XUE Z M, LIU F J, JIANG J Y, et al. Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived γ-valerolactone:enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO2[J]. Green Chemistry, 2017, 19(21):5041-5045. |
[46] | FANG L J, LI Y H, LIU P F, et al. Facile fabrication of large-aspect-ratio g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3):2039-2043. |
[47] | YAN J, HAN X X, QIAN J J, et al. Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance[J]. Journal of Materials Science, 2017, 52(22):13091-13102. |
[48] | RAHBAR N, SALEHNEZHAD Z, HATAMIE A, et al. Graphitic carbon nitride nanosheets as a fluorescent probe for chromium speciation[J]. Mikrochim Acta, 2018, 185(2):101-109. |
[49] | LIANG Q H, LI Z, HUANG Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials, 2015, 25(44):6885-6892. |
[50] | XIA P F, ZHU B C, YU J G, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2017, 5(7):3230-3238. |
[51] | XU H, YAN J, SHE X J, et al. Graphene-analogue carbon nitride:novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+[J]. Nanoscale, 2014, 6(3):1406-1415. |
[52] | FUKASAWA Y, TAKANABE K, SHIMOJIMA A, et al. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template[J]. Chemistry An Asian Journal, 2011, 6(1):103-109. |
[53] | GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene[J]. Angewandte Chemie International Edition, 2006, 45(27):4467-4471. |
[54] | DONG F, LI Y H, HO W K, et al. Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance[J]. Chinese Science Bulletin, 2014, 59(7):688-698. |
[55] | LEE S C, LINTANG H O, YULIATI L. A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic removal of phenol[J]. Chemistry An Asian Journal, 2012, 7(9):2139-2144. |
[56] | CHEN X F, JUN Y S, TAKANABE K, et al. Ordered mesoporous SBA-15 type graphitic carbon nitride:a semiconductor host structure for photocatalytic hydrogen evolution with visible light[J]. Chemistry of Materials, 2009, 21(18):4093-4095. |
[57] | ZHANG J S, GUO F S, WANG X C. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures[J]. Advanced Functional Materials, 2013, 23(23):3008-3014. |
[58] | SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3:1139. |
[59] | ZHENG D D, HUANG C J, WANG X C. Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis[J]. Nanoscale, 2015, 7(2):465-470. |
[60] | LI X H, ZHANG J S, CHEN X F, et al. Condensed graphitic carbon nitride nanorods by nanoconfinement:promotion of crystallinity on photocatalytic conversion[J]. Chemistry of Materials, 2011, 23(19):4344-4348. |
[61] | LI X H, WANG X C, ANTONIETTI M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemical Science, 2012, 3(6):2170-2174. |
[62] | LIU J, HUANG J H, ZHOU H, et al. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11):8434-8440. |
[63] | XU J, WANG Y, ZHU Y F. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J]. Langmuir, 2013, 29(33):10566-10572. |
[64] | ZHANG M, XU J, ZONG R L, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4[J]. Applied Catalysis B:Environmental, 2014, 147:229-235. |
[65] | HE F, CHEN G, YU Y G, et al. The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance[J]. Chemical Communications, 2015, 51(2):425-427. |
[66] | SHI L, LIANG L, WANG F X, et al. In situ bubble template promoted facile preparation of porous g-C3N4 with excellent visible-light photocatalytic performance[J]. RSC Advances, 2015, 5(78):63264-63270. |
[67] | IQBAL W, QIU B C, LEI J Y, et al. One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production[J]. Dalton Transactions, 2017, 46(32):10678-10684. |
[68] | FEI B, TANG Y W, WANG X Y, et al. One-pot synthesis of porous g-C3N4 nanomaterials with different morphologies and their superior photocatalytic performance[J]. Materials Research Bulletin, 2018, 102:209-217. |
[69] | YAN H J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light[J]. Chemical Communications, 2012, 48(28):3430-3432. |
[70] | IQBAL W, DONG C Y, XING M Y, et al. Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J]. Catalysis Science & Technology, 2017, 7(8):1726-1734. |
[71] | LYTH S M, NABAE Y, MORIYA S, et al. Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction[J]. Journal of Physical Chemistry C, 2009, 113(47):20148-20151. |
[72] | SUN Y Q, LI C, XU Y X, et al. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J]. Chemical Communications, 2010, 46(26):4740-4742. |
[73] | YANG S B, FENG X L, WANG X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23):5339-5343. |
[74] | KWON K, SA Y J, CHEON J Y, et al. Ordered mesoporous carbon nitrides with graphitic frameworks as metal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium[J]. Langmuir, 2012, 28(1):991-996. |
[75] | LIANG J, ZHENG Y, CHEN J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie International Edition, 2012, 51(16):3892-3896. |
[76] | ZHENG Y, JIAO Y, CHEN J, et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction[J]. Journal of the American Chemical Society, 2011, 133(50):20116-20119. |
[77] | QIN Y, LI J, YUAN J, et al. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2014, 272:696-702. |
[78] | WANG X P, WANG L X, ZHAO F, et al. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction[J]. Nanoscale, 2015, 7(7):3035-3042. |
[79] | LIU S H, DONG Y F, WANG Z Y, et al. Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2015, 3(39):19657-19661. |
[80] | ZHENG Y, JIAO Y, ZHU Y H, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017, 139(9):3336-3339. |
[81] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. |
[82] | YAN S C, LV S B, LI Z S, et al. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities[J]. Dalton Transactions, 2010, 39(6):1488-1491. |
[83] | HAN Q, ZHAO F, HU C G, et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting[J]. Nano Research, 2015, 8(5):1718-1728. |
[84] | ZHANG J S, ZHANG M W, YANG C, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Advanced Materials, 2014, 26(24):4121-4126. |
[85] | LU X L, XU K, CHEN P Z, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Journal of Materials Chemistry A, 2014, 2(44):18924-18928. |
[86] | ZHENG Y, LIN L, YE X J, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edition, 2014, 53(44):11926-11930. |
[87] | XING W N, TU W G, HAN Z H, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3):514-519. |
[88] | RAN J R, MA T Y, GAO G P, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy & Environmental Science, 2015, 8(12):3708-3717. |
[89] | WEI F Y, LIU Y, ZHAO H, et al. Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance[J]. Nanoscale, 2018, 10(9):4515-4522. |
[90] | WANG C, FAN H Q, REN X H, et al. Hydrothermally induced oxygen doping of graphitic carbon nitride with a highly ordered architecture and enhanced photocatalytic activity[J]. ChemSusChem, 2018, 11(4):700-708. |
[91] | LIN Z Z, WANG X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angewandte Chemie International Edition, 2013, 52(6):1735-1738. |
[92] | ZOU Y J, SHI J W, MA D D, et al. WS2/graphitic carbon nitride heterojunction nanosheets decorated with CdS quantum dots for photocatalytic hydrogen production[J]. ChemSusChem, 2018, 11(7):1187-1197. |
[93] | HAN Q, WANG B, GAO J, et al. Graphitic carbon nitride/nitrogen-rich carbon nanofibers:highly efficient photocatalytic hydrogen evolution without cocatalysts[J]. Angewandte Chemie International Edition, 2016, 55(36):10849-10853. |
[94] | ZHAO H, DONG Y M, JIANG P P, et al. In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhanced photocatalytic H2 production from water[J]. Journal of Materials Chemistry A, 2015, 3(14):7375-7381. |
[95] | LI Y, FENG X, LU Z X, et al. Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites[J]. Journal of Colloid and Interface Science, 2018, 513:866-876. |
[96] | YU J G, WANG S H, CHENG B, et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity[J]. Catalysis Science & Technology, 2013, 3(7):1782-1789. |
[97] | HONG J D, WANG Y S, WANG Y B, et al. Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water[J]. ChemSusChem, 2013, 6(12):2263-2268. |
[98] | HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition, 2013, 52(13):3621-3625. |
[99] | HOU Y D, ZHU Y S, XU Y, et al. Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light[J]. Applied Catalysis B:Environmental, 2014, 156/157:122-127. |
[100] | ZHOU X D, LUO Z H, TAO P F, et al. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 nanospheres modified porous g-C3N4[J]. Materials Chemistry and Physics, 2014, 143(3):1462-1468. |
[101] | DONG G H, ZHANG L Z. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light[J]. Journal of Materials Chemistry, 2012, 22(3):1160-1166. |
[102] | MAO J, PENG T Y, ZHANG X H, et al. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light[J]. Catalysis Science & Technology, 2013, 3(5):1253-1260. |
[103] | NIU P, YANG Y Q, YU J C, et al. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst[J]. Chemical Communications, 2014, 50(74):10837-10840. |
[104] | HUANG Y, WANG Y, BI Y Q, et al. Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of CO2[J]. RSC Advances, 2015, 5(42):33254-33261. |
[105] | WANG K, LI Q, LIU B S, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B:Environmental, 2015, 176:44-52. |
[106] | FU J W, ZHU B C, JIANG C J, et al. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, 13(15):1603938-1603946. |
[107] | TAHIR B, TAHIR M, AMIN N A S. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4nanorods under simulated solar energy[J]. Applied Surface Science, 2017, 419:875-885. |
[108] | DONG G H, HO W K, WANG C Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A, 2015, 3(46):23435-23441. |
[109] | HU S Z, LI Y M, LI F Y, et al. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4):2269-2278. |
[110] | LI S J, CHEN X, HU S Z, et al. Infrared ray assisted microwave synthesis:a convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability[J]. RSC Advances, 2016, 6(51):45931-45937. |
[111] | FENG X W, CHEN H, JIANG F, et al. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride:oxygen and sulfur co-doping for crystal and electronic structure modulation[J]. Journal of Colloid and Interface Science, 2017, 509:298-306. |
[112] | WANG Y J, WEI W S, LI M Y, et al. In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2photofixation ability under visible light[J]. RSC Advances, 2017, 7(29):18099-18107. |
[113] | CAO S H, CHEN H, JIANG F, et al. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea[J]. Applied Catalysis B:Environmental, 2018, 224:222-229. |
[114] | WU G, GAO Y, ZHENG B H. Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies[J]. Ceramics International, 2016, 42(6):6985-6992. |
[115] | 白金, 陈鑫, 奚兆毅, 等. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J].物理化学学报, 2017, 33(3):611-619. BAI J, CHEN X, XI Z Y, et al. Influence of solvothermal post-treatment on photochemical nitrogen conversion to ammonia with g-C3N4 catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(3):611-619. |
[116] | MA H Q, SHI Z Y, LI Q, et al. Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve-regrowth process[J]. Journal of Physics and Chemistry of Solids, 2016, 99:51-58. |
[117] | MA H Q, SHI Z Y, LI S, et al. Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment[J]. Applied Surface Science, 2016, 379:309-315. |
[118] | 曹宇辉, 佟宇飞, 张健, 等. 石墨相氮化碳的红外辅助微波法制备及光催化固氮性能[J]. 高等学校化学学报, 2016, 37(7):1357-1363. CAO Y H, TONG Y F, ZHANG J, et al. Infrared ray assisted microwave synthesis of graphitic carbon nitride and its nitrogen photofixation ability[J]. Chemical Journal of Chinese Universities, 2016, 37(7):1357-1363. |
[119] | ZHOU N, QIU P X, CHEN H, et al. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83:99-106. |
[120] | LI X M, SUN X, ZHANG L, et al. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4[J]. Journal of Materials Chemistry A, 2018, 6(7):3005-3011. |
[121] | 曲晓钰, 胡绍争, 李萍, 等. 镍掺杂石墨相氮化碳的熔盐辅助微波法制备及光催化固氮性能[J]. 高等学校化学学报, 2017, 38(12):2280-2288. QU X Y, HU S Z, LI P, et al. Molten salt-assisted microwave synthesis and nitrogen photofixation ability of nickel doped grapgitic carbon nitride[J]. Chemical Journal of Chinese Universities, 2017, 38(12):2280-2288. |
[122] | HU S Z, CHEN X, LI Q, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride:the experimental and density functional theory simulation analysis[J]. Applied Catalysis B:Environmental, 2017, 201:58-69. |
[123] | QIU P X, XU C M, ZHOU N, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B:Environmental, 2018, 221:27-35. |
[124] | LIU Q X, AI L H, JIANG J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation[J]. Journal of Materials Chemistry A, 2018, 6(9):4102-4110. |
[125] | CAO S H, ZHOU N, GAO F H, et al. All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation[J]. Applied Catalysis B:Environmental, 2017, 218:600-610. |
[126] | ZHANG Q, HU S Z, FAN Z P, et al. Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment[J]. Dalton Transactions, 2016, 45(8):3497-3505. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[4] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[9] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[10] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[11] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[12] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[13] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[14] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[15] | 彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||