化工学报 ›› 2019, Vol. 70 ›› Issue (1): 298-308.DOI: 10.11949/j.issn.0438-1157.20180845
王凯1,2,王德武1(),侯得印2,3(),袁子怡4,王军3
收稿日期:
2018-07-23
修回日期:
2018-09-30
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
王德武,侯得印
作者简介:
王凯(1993—),男,硕士研究生|王德武(1980—),男,博士,教授,<email>wangdewu@hebut.edu.cn</email>|侯得印(1980—),男,博士,副研究员,<email>dyhou@rcees.ac.cn</email>
基金资助:
Kai WANG1,2,Dewu WANG1(),Deyin HOU2,3(),Ziyi YUAN4,Jun WANG3
Received:
2018-07-23
Revised:
2018-09-30
Online:
2019-01-05
Published:
2019-01-05
Contact:
Dewu WANG,Deyin HOU
摘要:
采用乙烯基三甲氧基硅烷(VTMOS)对SiO2疏水改性,通过自组装法,将改性SiO2接枝在商业PVDF(聚偏氟乙烯)膜表面,使其表面达到超疏水。利用场发射电子显微镜、红外光谱仪、接触角测量仪及毛细流孔径分析仪等仪器对改性前后膜的表面形貌、化学组成、接触角及孔径变化等性能参数进行表征。结果表明,VTMOS不仅对SiO2疏水改性,还通过自身的水解缩聚反应,生成了规整圆球状的聚乙烯基倍半硅氧烷(PVSQ)微粒,纳米级SiO2分布于微米级PVSQ表面,在改性膜表面构造了多层次微/纳米粗糙表面,在低表面能疏水基团乙烯基和甲氧基的共同作用下,成功实现了超疏水改性,改性膜水接触角达到159.5°,滚动角降至8.1°。以NaCl、HA和CaCl2混合溶液为进料液,对商业PVDF膜和改性膜进行了长期直接接触式膜蒸馏(DCMD)实验,探究其抗污染性能。结果表明,改性膜适用于长期DCMD实验,并表现出比商业PVDF膜更稳定的通量,截盐率始终大于99.99%,具有良好的稳定性和抗污染性能。
中图分类号:
王凯, 王德武, 侯得印, 袁子怡, 王军. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308.
Kai WANG, Dewu WANG, Deyin HOU, Ziyi YUAN, Jun WANG. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation[J]. CIESC Journal, 2019, 70(1): 298-308.
Alcohol sol compositions(preparation conditions) | Value |
---|---|
concentration of SiO2/%(mass) | 0.5, 1.0, 1.5, 2.0 |
concentration of VTMOS/%(mass) | 2.0, 4.0, 6.0, 8.0 |
immersion solution temperature/℃ | 40 |
dipping time/h | 0.5 |
air-tried temperature/℃ | room temperature |
表1 醇溶胶组成与改性膜制备参数
Table 1 Alcohol sol compositions and preparation conditions of modified membranes
Alcohol sol compositions(preparation conditions) | Value |
---|---|
concentration of SiO2/%(mass) | 0.5, 1.0, 1.5, 2.0 |
concentration of VTMOS/%(mass) | 2.0, 4.0, 6.0, 8.0 |
immersion solution temperature/℃ | 40 |
dipping time/h | 0.5 |
air-tried temperature/℃ | room temperature |
Membrane label | Concentration of SiO2/% | Mean pore size/μm | Bubble pore size/μm | Porosity/% | Membrane thickness/mm |
---|---|---|---|---|---|
PVDF | 0 | 0.76±0.06 | 1.13±0.08 | 77.68±2.23 | 0.102±0.02 |
PVDF-M1 | 0.5 | 0.75±0.08 | 1.12±0.11 | 75.13±1.76 | 0.118±0.02 |
PVDF-M2 | 1.0 | 0.74±0.07 | 1.11±0.09 | 73.30±0.97 | 0.131±0.02 |
PVDF-M3 | 1.5 | 0.74±0.04 | 1.09±0.07 | 71.61±1.15 | 0.141±0.02 |
PVDF-M4 | 2.0 | 0.72±0.07 | 1.05±0.10 | 66.36±1.56 | 0.174±0.02 |
表2 商业PVDF膜与不同质量分数SiO2改性膜测试数据
Table 2 Measured data of commercial PVDF membrane and modified membranes with different SiO2 concentrations
Membrane label | Concentration of SiO2/% | Mean pore size/μm | Bubble pore size/μm | Porosity/% | Membrane thickness/mm |
---|---|---|---|---|---|
PVDF | 0 | 0.76±0.06 | 1.13±0.08 | 77.68±2.23 | 0.102±0.02 |
PVDF-M1 | 0.5 | 0.75±0.08 | 1.12±0.11 | 75.13±1.76 | 0.118±0.02 |
PVDF-M2 | 1.0 | 0.74±0.07 | 1.11±0.09 | 73.30±0.97 | 0.131±0.02 |
PVDF-M3 | 1.5 | 0.74±0.04 | 1.09±0.07 | 71.61±1.15 | 0.141±0.02 |
PVDF-M4 | 2.0 | 0.72±0.07 | 1.05±0.10 | 66.36±1.56 | 0.174±0.02 |
1 | AlkhudhiriA, DarwishN, HilalN. Membrane distillation: a comprehensive review[J]. Desalination, 2012, 287(8): 2-18. |
2 | ZhangW, LiY, LiuJ, et al. Fabrication of hierarchical poly(vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation[J]. Journal of Membrane Science, 2017, 535: 258-267. |
3 | RenL F, XiaF, ChenV, et al. TiO2-FTCS modified superhydrophobic PVDF electrospun nanofibrous membrane for desalination by direct contact membrane distillation[J]. Desalination, 2017, 423: 1-11. |
4 | LinS, NejatiS, BooC, et al. Omniphobic membrane for robust membrane distillation[J]. Environmentalence & Technology Letters, 2014, 1(11): 443-447. |
5 | GrażYnaL, WojciechB, BartłOmiejM, et al. Application of membrane distillation for ethanol recovery during fuel ethanol production[J]. Journal of Membrane Science, 2011, 375(1/2): 212-219. |
6 | KhalifaA, AhmadH, AntarM, et al. Experimental and theoretical investigations on water desalination using direct contact membrane distillation[J]. Desalination, 2017, 404: 22-34. |
7 | GrytaM, TomaszewskaM, GrzechulskaJ, et al. Membrane distillation of NaCl solution containing natural organic matter[J]. Journal of Membrane Science, 2001, 181(2): 279-287. |
8 | GeQ, PengW, WanC, et al. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment.[J]. Environmental Science & Technology, 2012, 46(11): 6236. |
9 | WangZ, LinS. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability[J]. Water Research, 2017, 112: 38-47. |
10 | EykensL, SitterK D, DotremontC, et al. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil[J]. Applied Sciences, 2017, 7(2): 118. |
11 | KhayetM, MatsuuraT. Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation[J]. Industrial & Engineering Chemistry Research, 2001, 40(24): 5710-5718. |
12 | GrytaM. Long-term performance of membrane distillation process[J]. Journal of Membrane Science, 2005, 265(1): 153-159. |
13 | RazmjouA, ArifinE, DongG, et al. Superhydrophobic modification of TiO2, nanocomposite PVDF membranes for applications in membrane distillation[J]. Journal of Membrane Science, 2012, 415/416(10): 850-863. |
14 | FüRstnerR, BarthlottW, NeinhuisC, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2005, 21(3): 956-961. |
15 | ZhangJ, PuG, SevertsonS J. Fabrication of zinc oxide/polydimethylsiloxane composite surfaces demonstrating oil-fouling-resistant superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2014, 2(10): 2880-2883. |
16 | TijingL D, YunC W, ChoiJ S, et al. Fouling and its control in membrane distillation—a review[J]. Journal of Membrane Science, 2015, 475: 215-244. |
17 | WolfP H, SivernsS, MontiS. UF membranes for RO desalination pretreatment[J]. Desalination, 2005, 182(1): 293-300. |
18 | BhushanB, HerE K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(11): 8207-17. |
19 | WangH, FangJ, ChengT, et al. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity[J]. Chemical Communications, 2008, 7(7): 877. |
20 | MchaleG, ShirtcliffeN J, NewtonM I. Super-hydrophobic and super-wetting surfaces: analytical potential[J]. Analyst, 2004, 129(4): 284-287. |
21 | KimH, NohK, ChoiC, et al. Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes[J]. Langmuir, 2011, 27(16): 10191-10196. |
22 | YangH, PiP, CaiZ Q, et al. Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol–gel process[J]. Applied Surface Science, 2010, 256(13): 4095-4102. |
23 | LattheS S, ImaiH, GanesanV, et al. Porous superhydrophobic silica films by sol–gel process[J]. Microporous & Mesoporous Materials, 2010, 130(1): 115-121. |
24 | PengP, KeQ, ZhouG, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. J. Colloid Interface Sci., 2013, 395(1): 326-328. |
25 | SunM, LuoC, XuL, et al. Artificial lotus leaf by nanocasting[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2005, 21(19): 8978. |
26 | GadelhakM, OchandaF O, SamahaM A, et al. Fabrication of superhydrophobic fiber coatings by DC-biased AC-electrospinning[J]. Journal of Applied Polymer Science, 2011, 123(2): 1112-1119. |
27 | JiangL, ZhaoY, ZhaiJ. A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie, 2004, 43(33): 4338. |
28 | BarshiliaH C, AnanthA, GuptaN, et al. Superhydrophobic nanostructured Kapton surfaces fabricated through Ar+O2 plasma treatment: effects of different environments on wetting behaviour[J]. Applied Surface Science, 2013, 268(268): 464-471. |
29 | FresnaisJ, ChapelJ P, Poncin-epaillardF. Synthesis of transparent superhydrophobic polyethylene surfaces[J]. Surface & Coatings Technology, 2006, 200(18): 5296-5305. |
30 | ZhangZ, YangW, GuZ, et al. PVDF films with superhydrophobic surface fabricated by plasma-enhanced chemical vapor deposition[J]. Advanced Materials Research, 2009, 79/80/81/82: 1451-1454. |
31 | HuangL, LauS P, YangH Y, et al. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film[J]. Journal of Physical Chemistry B, 2005, 109(16): 7746-7753. |
32 | ZhangH, LiuY, YaoD, et al. ChemInform abstract: hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures[J]. Chemical Society Reviews, 2012, 43(48): 6066-88. |
33 | ThorkelssonK, BaiP, XuT. Self-assembly and applications of anisotropic nanomaterials: a review[J]. Nano Today, 2015, 10(1): 48-66. |
34 | 杨辉, 高红芳. 二氧化硅/聚乙烯基倍半硅氧烷超疏水涂层的制备与表征[J].高分子材料科学与工程, 2016, 32(11): 130-134. |
YangH, GaoH F. Preparation and characterization of superhydrophobic coatings with silica/polyvinylsilsesquioxane[J]. Polymer Materials Science & Engineering, 2016, 32(11): 130-134. | |
35 | GuM, ZhangJ, WangX, et al. Formation of poly(vinylidene fluoride)(PVDF) membranes via thermally induced phase separation[J]. Desalination, 2006, 192(1): 160-167. |
36 | SongZ, XingM, ZhangJ, et al. Determination of phase diagram of a ternary PVDF/γ-BL/DOP system in TIPS process and its application in preparing hollow fiber membranes for membrane distillation[J]. Separation & Purification Technology, 2012, 90(90): 221-230. |
37 | 杨辉, 陈飞. 乙烯基三甲氧基硅烷对二氧化硅的超疏水改性研究[J]. 人工晶体学报, 2015, 44(09): 2597-2605. |
YangH, ChenF. Superhydrophobic modification of silica with VTMO[J]. Journal of Synthetic Crystals, 2015, 44(09): 2597-2605. | |
38 | LiH, YuS. A robust superhydrophobic surface and origins of its self-cleaning properties[J]. Applied Surface Science, 2017, 420: 336-345. |
39 | SrisurichanS, JiraratananonR, FaneA G. Humic acid fouling in the membrane distillation process[J]. Desalination, 2005, 174(1): 63-72. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[12] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[13] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[14] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[15] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||