化工学报 ›› 2019, Vol. 70 ›› Issue (8): 2898-2908.DOI: 10.11949/j.issn.0438-1157.20181375
收稿日期:
2018-11-19
修回日期:
2018-12-14
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
钟梅
作者简介:
翟建荣(1996—),男,硕士研究生,基金资助:
Jianrong ZHAI1(),Mei ZHONG1,2(),Fengyun MA1,Haoquan HU2
Received:
2018-11-19
Revised:
2018-12-14
Online:
2019-08-05
Published:
2019-08-05
Contact:
Mei ZHONG
摘要:
采用机械化学法制备Ni-Ce/Al2O3催化剂,在固定床反应器中考察了水蒸气气氛对煤焦油模型化合物甲苯+芘催化裂解行为的影响。根据产物生成规律提出了芘向萘转化的裂解机理,并以D2O对其进行了验证。通过XRD、TG-DTG和Raman等表征了析碳的类型与结构特征。结果表明:相较于纯氮气气氛,水的加入可明显提升重质组分芘的裂解率,且随水碳比(S/C)增加呈先增加后降低的趋势,在S/C=0.15时达到最大值98.93%,比S/C=0时增加32.09%。析碳率随S/C比增加一直呈下降趋势,由S/C=0时的10.04%降至S/C=0.26时的5.39%。析碳分析结果表明,S/C=0时,生成的积炭类型主要是β型碳及γ型碳,水蒸气存在时,活性较高的α型碳含量增加,说明水蒸气的持续消碳作用抑制了Cα向Cβ与Cγ方向转化。
中图分类号:
翟建荣, 钟梅, 马凤云, 胡浩权. 水蒸气对煤焦油模化物裂解行为及析碳的影响[J]. 化工学报, 2019, 70(8): 2898-2908.
Jianrong ZHAI, Mei ZHONG, Fengyun MA, Haoquan HU. Effect of steam atmosphere on cracking behavior and carbon deposition of coal tar model compounds[J]. CIESC Journal, 2019, 70(8): 2898-2908.
水/碳比 | 模型化合物 | 液体产率/% | 气产率/% | 析碳率/% | 芘裂解率/% | 芘生成率/ (mg/g) |
---|---|---|---|---|---|---|
0 | 甲苯 | 87.46 | 2.53 | 10.01 | — | 0.46 |
甲苯 + 芘 | 87.53 | 2.43 | 10.04 | 66.84 | — | |
0.08 | 甲苯 | 75.75 | 17.39 | 7.65 | — | 0.40 |
甲苯 + 芘 | 74.61 | 19.39 | 6.68 | 86.91 | — | |
0.12 | 甲苯 | 75.11 | 18.91 | 6.98 | — | 0.34 |
甲苯 + 芘 | 74.02 | 20.31 | 6.61 | 88.19 | — | |
0.13 | 甲苯 | 70.23 | 24.10 | 6.76 | — | 0.31 |
甲苯 + 芘 | 69.94 | 24.75 | 6.32 | 94.68 | — | |
0.15 | 甲苯 | 65.60 | 29.10 | 6.52 | — | 0.26 |
甲苯 + 芘 | 66.43 | 28,63 | 6.07 | 98.93 | — | |
0.26 | 甲苯 | 54.33 | 41.55 | 5.71 | — | 0.20 |
甲苯 + 芘 | 55.45 | 40.65 | 5.39 | 96.41 | — |
表1 不同水量对模型化合物催化裂解性能的影响
Table 1 Effect of water flow on catalytic cracking performance of model compounds
水/碳比 | 模型化合物 | 液体产率/% | 气产率/% | 析碳率/% | 芘裂解率/% | 芘生成率/ (mg/g) |
---|---|---|---|---|---|---|
0 | 甲苯 | 87.46 | 2.53 | 10.01 | — | 0.46 |
甲苯 + 芘 | 87.53 | 2.43 | 10.04 | 66.84 | — | |
0.08 | 甲苯 | 75.75 | 17.39 | 7.65 | — | 0.40 |
甲苯 + 芘 | 74.61 | 19.39 | 6.68 | 86.91 | — | |
0.12 | 甲苯 | 75.11 | 18.91 | 6.98 | — | 0.34 |
甲苯 + 芘 | 74.02 | 20.31 | 6.61 | 88.19 | — | |
0.13 | 甲苯 | 70.23 | 24.10 | 6.76 | — | 0.31 |
甲苯 + 芘 | 69.94 | 24.75 | 6.32 | 94.68 | — | |
0.15 | 甲苯 | 65.60 | 29.10 | 6.52 | — | 0.26 |
甲苯 + 芘 | 66.43 | 28,63 | 6.07 | 98.93 | — | |
0.26 | 甲苯 | 54.33 | 41.55 | 5.71 | — | 0.20 |
甲苯 + 芘 | 55.45 | 40.65 | 5.39 | 96.41 | — |
峰 | 名称 | 结构 | 峰 | 名称 | 结构 |
---|---|---|---|---|---|
1 | 对二甲苯 | 7 | 3-甲基联二苯 | ||
2 | 邻二甲苯 | 8 | 2,2’-二甲基联苯 | ||
3 | 间二甲苯 | 9 | 3,3’-二甲基联苯 | ||
4 | 萘 | 10 | 顺式-1,2二苯乙烯 | ||
5 | 2-乙烯基萘 | 11 | 菲 | ||
6 | 二苯基甲烷 | 12 | 芘 |
表2 裂解反应液体产物GC-MS图的定性分析
Table 2 Qualitative analysis of GC-MS spectrum of liquid product from cracking reaction
峰 | 名称 | 结构 | 峰 | 名称 | 结构 |
---|---|---|---|---|---|
1 | 对二甲苯 | 7 | 3-甲基联二苯 | ||
2 | 邻二甲苯 | 8 | 2,2’-二甲基联苯 | ||
3 | 间二甲苯 | 9 | 3,3’-二甲基联苯 | ||
4 | 萘 | 10 | 顺式-1,2二苯乙烯 | ||
5 | 2-乙烯基萘 | 11 | 菲 | ||
6 | 二苯基甲烷 | 12 | 芘 |
水/碳比 | 峰面积 | ||
---|---|---|---|
D峰 | G峰 | 总面积 | |
0 | 202137 | 122233 | 324370 |
0.08 | 147727 | 82603 | 230330 |
0.12 | 148508 | 80892 | 229400 |
0.13 | 87057 | 50340 | 137400 |
0.15 | 59651 | 32537 | 92188 |
0.26 | 44518 | 24489 | 69007 |
表3 反应后催化剂的Raman高斯拟合分析
Table 3 Raman Gauss fitting analysis of catalyst after reaction
水/碳比 | 峰面积 | ||
---|---|---|---|
D峰 | G峰 | 总面积 | |
0 | 202137 | 122233 | 324370 |
0.08 | 147727 | 82603 | 230330 |
0.12 | 148508 | 80892 | 229400 |
0.13 | 87057 | 50340 | 137400 |
0.15 | 59651 | 32537 | 92188 |
0.26 | 44518 | 24489 | 69007 |
水/碳比 | 比表面积/(m2/g) | 平均孔径/nm | 平均孔容/(cm3/g) |
---|---|---|---|
新鲜 | 139 | 8.19 | 0.37 |
0 | 21 | 11.15 | 0.07 |
0.12 | 90 | 4.85 | 0.12 |
0.26 | 126 | 4.65 | 0.15 |
表4 催化剂的孔结构特征
Table 4 Pore characteristics of catalysts
水/碳比 | 比表面积/(m2/g) | 平均孔径/nm | 平均孔容/(cm3/g) |
---|---|---|---|
新鲜 | 139 | 8.19 | 0.37 |
0 | 21 | 11.15 | 0.07 |
0.12 | 90 | 4.85 | 0.12 |
0.26 | 126 | 4.65 | 0.15 |
1 | 王向辉, 门卓武, 许明, 等 . 低阶煤粉煤热解提质技术研究现状及发展建议[J]. 洁净煤技术, 2014, 20(6): 36-41. |
Wang X H , Men Z W , Xu M , et al . Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technol., 2014, 20(6): 36-41. | |
2 | 侯斌, 吕子安, 李晓辉, 等 . 生物质热解产物中焦油的催化裂解[J]. 燃料化学学报, 2001, 29(1): 70-75. |
Hou B , Lyu Z A , Li X H , et al . Catalytic cracking of tar derived from biomass pyrolysis[J]. J. Fuel Chem. Technol., 2001, 29(1): 70-75. | |
3 | Inaba M , Murata K , Masahiro S A , et al . Hydrogen production by gasification of cellulose over Ni catalysts supported on zeolites[J]. Energy & Fuels, 2007, 20(2): 432-438. |
4 | Zhang R Q , Robert C B , Andrew S . Catalytic destruction of tar in biomass dericed producer gas[J]. Energy Conversion and Management, 2004, 45(7/8): 995-1014. |
5 | Simell P A , Bredenberg B S . Catalytic purification of tarry fuel gas[J]. Fuel, 1990, 69(10): 1219-1225. |
6 | Nozomu S , Tsutomu O , Ondřej M , et al . Interparticle desorption and re-adsorption of alkali and alkaline earth metallic species within a bed of pyrolyzing char from pulverized woody biomass[J]. Energy & Fuels, 2006, 20(20): 1294-1297. |
7 | Lizzio A A , Radovic L R . Transient kinetics study of catalytic char gasification in carbon dioxide[J]. Industrial & Engineering Chemistry Research, 1991, 30(8): 1735-1744. |
8 | 周志军, 赖开忠, 周俊虎, 等 . 气化过程中焦油催化裂解的影响因素研究[J]. 热力发电, 2005, 34(11): 26-29. |
Zhou Z J , Lai K Z , Zhou J H , et al . Study on affection factors upon catalytic splitting decomposition of tar in process of gasification[J]. Thermal Power Generation, 2005, 34(11): 26-29. | |
9 | 张艳敏, 邹达, 赵渊, 等 . 双金属催化剂对煤焦油模型化合物催化裂解行为的影响[J]. 化工学报, 2017, 68(10): 3805-3815. |
Zhang Y M , Zou D , Zhao Y , et al . Effect of bimetallic catalysts on cracking behavior of coal tar model compounds[J]. CIESC Journal, 2017, 68(10): 3805-3815. | |
10 | 杨泽, 李挺, 王美君, 等 . Ni基生物质焦油重整催化剂的研究进展[J]. 化工进展, 2016, 35(10): 3155-3163. |
Yang Z , Li T , Wang M J , et al . Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3155-3163. | |
11 | 张京, 董洁, 李凡 . 用于多环芳烃裂解催化剂的研究进展[J]. 化工进展, 2011, 30(s1): 138-142. |
Zhang J , Dong J , Li F . Advance of catalysts for polycyclic aromatic hydrocarbons cracking[J]. Chemical Industry and Engineering Progress, 2011, 30(s1): 138-142. | |
12 | Zhang S , Song Y , Song Y C , et al . An advanced biomass gasification technology with integrated catalytic hot gas cleaning(III):Effects of inorganic species in char on the reforming of tars from wood and agricultural wastes[J]. Fuel, 2016, 183: 177-184. |
13 | Cao J P , Ren J , Zhao X Y , et al . Effect of atmosphere on carbon deposition of Ni/Al2O3, and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound[J]. Fuel, 2018, 217: 515-521. |
14 | Wang L , Li D , Koike M , et al . Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas[J]. Fuel, 2013, 112(10): 654-661. |
15 | He L , Hu S , Jiang L , et al . Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3, catalysts: roles of catalyst supports[J]. Fuel Processing Technology, 2018, 176: 7-14. |
16 | Zhang R , Wang Y , Brown R C . Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2 [J]. Energy Conversion & Management, 2007, 48(1): 68-77. |
17 | 翟建荣, 张艳敏, 莫文龙, 等 . 制备方法对煤焦油模型化合物裂解催化剂Ni/Al2O3结构及性能的影响[J]. 燃料化学学报, 2018, 46(9): 1063-1073. |
Zhai J R , Zhang Y M , Mo W L , et al . Effect of preparation method on the structure and properties of coal tar model compound cracking catalyst Ni/Al2O3 [J]. J.Fuel Chem Technol.,2018 46(9):1063-1073 | |
18 | 刘晓燕 . 焦油模型化合物的催化裂解及析炭的实验研究[D]. 武汉: 华中师范大学, 2013. |
Liu X Y . Experimental study of the catalytic cracking and carbon deposition of tar model compound[D]. Wuhan: Central China Normal University, 2013. | |
19 | 周丛丛 . 生物质焦油水蒸气重整橄榄石载铁催化剂的研究[D]. 大连: 大连理工大学, 2013. |
Zhou C C . Effect of Fe2O3/olivine on the catalytic steam reforming of bio-oil[D]. Dalian: Dalian University of Technology, 2013. | |
20 | Vicente J , Montero C , Ereña J , et al . Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12586-12596. |
21 | Artetxe M , Nahil M A , Olazar M , et al . Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst[J]. Fuel, 2016, 184: 629-636. |
22 | Remiro A , Valle B , Aguayo A T , et al . Operating conditions for attenuating Ni/La2O3 -αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction[J]. Fuel Processing Technology, 2013, 115: 222-232. |
23 | Sengupta S , Ray K , Deo G . Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11462-11472. |
24 | 莫文龙, 马凤云, 刘月娥, 等 . 焙烧温度对CO2-CH4重整制合成气NiO/γ-Al2O3催化剂性能的影响[J]. 无机材料学报, 2016, 31(3): 234-240. |
Mo W L , Ma F Y , Liu Y E , et al . Influence of calcination temperature on performance of NiO/γ-Al2O3 catalyst for CO2-CH4 reforming to produce syngas[J]. J.Inorg Mater.,2016,31(3):234-240. | |
25 | 李文英, 孙泉 . CH4-CO2重整反应镍催化剂的积碳性能研究[J]. 燃料化学学报, 1997, 25(5): 460-464. |
Li W Y , Sun Q . Studies on carbon deposition of Ni catalyst in CH4-CO2 reforming reaction[J]. J.Fuel Chem Technol.,1997,25(5):460-464. | |
26 | Guo J , Lou H , Zheng X . The deposition of coke from methane on a Ni/MgAlO catalyst[J]. Carbon, 2007, 45(6): 1314-1321. |
27 | 张兆斌, 余长春, 沈师孔 . 甲烷部分氧化制合成气的La2O3助Ni/MgAl2O4催化剂[J]. 催化学报, 2000, 21(1): 14-18. |
Zhang Z B , Yu C C , Shen S K . Partial oxidation of CH4 to syngas on La2O3-promoted Ni/MgAl2O4 [J]. Chinese Journal of Catalysis, 2000, 21(1): 14-18. | |
28 | 杨帆, 周志杰, 王辅臣, 等 . 氢气存在下的煤焦水蒸气气化(Ⅰ): 反应特性研究[J]. 燃料化学学报, 2009, 37(1): 36-41. |
Yang F , Zhou Z J , Wang F C , et al . Coal char gasification with steam and H2 (Ⅰ): The gasification reaction characteristics[J]. J.Fuel Chem.Technol.,2009,37(1):36-41. | |
29 | Lin B , Guo Y , Lin J , et al . Deactivation study of carbon-supported ruthenium catalyst with potassium promoter[J]. Applied Catalysis A General, 2017, 541: 1-7. |
30 | Wang C , Sun N , Wei W , et al . Carbon inter0438-1157-2019-70-8-2898tes during CO2 reforming of methane over NiCaOZrO2 catalysts: a temperature-programmed surface reaction study[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19014-19024. |
31 | Ran M , Sun W , Liu Y , et al . Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition[J]. Journal of Solid State Chemistry, 2013, 197(1): 517-522. |
32 | Hata K , Futaba D N , Mizuno K , et al . Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. |
33 | Baker R T K . Catalytic growth of carbon filaments[J]. Carbon, 1989, 27(3): 315-323. |
34 | Baker R T K , Harris P S , Thomas R B , et al . Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene[J]. Journal of Catalysis, 1973, 30(1): 86-95. |
35 | 郭春垒, 方向晨, 贾立明, 等 . 分子筛重整催化剂Pt/HZSM-5积炭失活研究[J]. 石油炼制与化工, 2012, 43(4): 25-29. |
Guo C L , Fang X C , Jia L M , et al . Study on the deactivation of Pt/HZSM-5 zeolitic reforming catalyst by coke deposition[J]. Petroleum Processing and Petrochemicals, 2012, 43(4): 25-29. | |
36 | 姚银堂, 张喜文, 马波, 等 . 不同结构的芳烃对加氢裂化催化剂积炭的影响[J]. 燃料化学学报, 2003, 31(1): 58-64. |
Yao Y T , Zhang X W , Ma B , et al . Effect of aromatics with various structures on coke deposited on hydrocracking catalyst[J]. J.Fuel Chem.Technol.,2003,31(1):58-64. | |
37 | 曾昭槐, 李玉光, 莫庭焕 . 高温水蒸汽处理HZSM-5沸石的结构变化及其对甲苯烷基化择形催化的影响[J]. 催化学报, 1986, 7(1): 28-34. |
Zeng Z H , Li Y G , Mo T H . The structural changes of HZSM-5 zeolites treated by high temperature steam and their effects on the alkylation of toluene with methanol[J]. Chinese Journal of Catalysis, 1986, 7(1): 28-34. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||