化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1367-1374.DOI: 10.11949/j.issn.0438-1157.20181328
贾勇1,2(),蒋进1,赵忍1,荣卫龙3,殷李国1,顾明言1,龙红明2
收稿日期:
2018-11-15
修回日期:
2019-01-09
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
贾勇
作者简介:
贾勇(1981—),男,博士,副教授,<email>jiayong2000@163.com</email>
基金资助:
Yong JIA1,2(),Jin JIANG1,Ren ZHAO1,Weilong RONG3,Liguo YIN1,Mingyan GU1,Hongming LONG2
Received:
2018-11-15
Revised:
2019-01-09
Online:
2019-04-05
Published:
2019-04-05
Contact:
Yong JIA
摘要:
喷淋塔氨法脱硫技术被广泛应用于净化烟气的SO2,传质系数是喷淋吸收塔重要的设计和运行参数,但目前文献中有关氨法脱硫传质系数的报道很少,还有待进一步研究。在喷淋塔中对氨法脱硫SO2吸收传质过程进行了实验研究,结合对液滴和塔壁液膜运动的计算,得到不同实验条件下SO2的吸收传质速率,并建立了氨法脱硫SO2吸收传质系数表达式。该传质系数包含浆液pH、烟气流速ug和液气比L/G等主要参数,能够反映不同pH、ug和L/G条件下SO2在单位气液接触面积上的传质速率。对比验证结果表明,该传质系数计算得到的SO2吸收传质速率与实验值之间的相对误差小于±12%,二者能够较好地吻合。建立的传质系数表达式能够为喷淋塔氨法脱硫的优化设计和运行提供理论参考。
中图分类号:
贾勇, 蒋进, 赵忍, 荣卫龙, 殷李国, 顾明言, 龙红明. 氨法烟气脱硫SO2吸收传质系数研究[J]. 化工学报, 2019, 70(4): 1367-1374.
Yong JIA, Jin JIANG, Ren ZHAO, Weilong RONG, Liguo YIN, Mingyan GU, Hongming LONG. Investigation of mass transfer coefficient of absorption of sulfur dioxide by ammonia[J]. CIESC Journal, 2019, 70(4): 1367-1374.
ug/ (m·s-1) | pH | (L/G)/ (L·m-3) | T/K | ×106 | ky/ (kmol·m-2·h-1) |
---|---|---|---|---|---|
2.16 | 5.5 | 2 | 298.15 | 253 | 2.04 |
2.16 | 5.5 | 2.5 | 298.15 | 250 | 2.41 |
2.16 | 5.5 | 3 | 298.15 | 196 | 2.74 |
2.16 | 5.5 | 3.5 | 298.15 | 214 | 2.85 |
2.16 | 5.5 | 4 | 298.15 | 184 | 3.20 |
2.16 | 5.15 | 3 | 298.15 | 202 | 3.21 |
2.16 | 5.39 | 3 | 298.15 | 198 | 3.34 |
2.16 | 5.44 | 3 | 298.15 | 196 | 3.38 |
2.16 | 5.58 | 3 | 298.15 | 188 | 3.62 |
2.16 | 5.68 | 3 | 298.15 | 184 | 3.75 |
2.16 | 5.7 | 3 | 298.15 | 179 | 3.89 |
2.16 | 5.73 | 3 | 298.15 | 174 | 4.05 |
2.16 | 5.83 | 3 | 298.15 | 165 | 4.35 |
2.16 | 5.95 | 3 | 298.15 | 162 | 4.45 |
1.77 | 5.5 | 3 | 298.15 | 184 | 3.11 |
2.16 | 5.5 | 3 | 298.15 | 196 | 3.28 |
2.56 | 5.5 | 3 | 298.15 | 220 | 3.39 |
2.95 | 5.5 | 3 | 298.15 | 226 | 3.43 |
3.34 | 5.5 | 3 | 298.15 | 233 | 3.54 |
2.56 | 5.5 | 2 | 298.15 | 262 | 2.14 |
2.56 | 5.5 | 2.5 | 298.15 | 227 | 2.58 |
2.56 | 5.5 | 3 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 3.5 | 298.15 | 199 | 3.12 |
2.56 | 5.5 | 4 | 298.15 | 188 | 3.37 |
2.56 | 5.15 | 2 | 298.15 | 181 | 3.54 |
2.56 | 5.39 | 2 | 298.15 | 177 | 3.65 |
2.56 | 5.44 | 2 | 298.15 | 173 | 3.75 |
2.56 | 5.58 | 2 | 298.15 | 164 | 4.01 |
2.56 | 5.68 | 2 | 298.15 | 159 | 4.15 |
2.56 | 5.7 | 2 | 298.15 | 153 | 4.33 |
2.56 | 5.73 | 2 | 298.15 | 148 | 4.50 |
2.56 | 5.83 | 2 | 298.15 | 137 | 4.84 |
2.56 | 5.95 | 2 | 298.15 | 134 | 4.95 |
1.77 | 5.5 | 2 | 298.15 | 215 | 2.80 |
2.16 | 5.5 | 2 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 2 | 298.15 | 201 | 3.07 |
2.95 | 5.5 | 2 | 298.15 | 197 | 3.15 |
3.34 | 5.5 | 2 | 298.15 | 193 | 3.26 |
表1 SO2吸收实验传质速率
Table 1 Experimental mass transfer rate of SO2 absorption
ug/ (m·s-1) | pH | (L/G)/ (L·m-3) | T/K | ×106 | ky/ (kmol·m-2·h-1) |
---|---|---|---|---|---|
2.16 | 5.5 | 2 | 298.15 | 253 | 2.04 |
2.16 | 5.5 | 2.5 | 298.15 | 250 | 2.41 |
2.16 | 5.5 | 3 | 298.15 | 196 | 2.74 |
2.16 | 5.5 | 3.5 | 298.15 | 214 | 2.85 |
2.16 | 5.5 | 4 | 298.15 | 184 | 3.20 |
2.16 | 5.15 | 3 | 298.15 | 202 | 3.21 |
2.16 | 5.39 | 3 | 298.15 | 198 | 3.34 |
2.16 | 5.44 | 3 | 298.15 | 196 | 3.38 |
2.16 | 5.58 | 3 | 298.15 | 188 | 3.62 |
2.16 | 5.68 | 3 | 298.15 | 184 | 3.75 |
2.16 | 5.7 | 3 | 298.15 | 179 | 3.89 |
2.16 | 5.73 | 3 | 298.15 | 174 | 4.05 |
2.16 | 5.83 | 3 | 298.15 | 165 | 4.35 |
2.16 | 5.95 | 3 | 298.15 | 162 | 4.45 |
1.77 | 5.5 | 3 | 298.15 | 184 | 3.11 |
2.16 | 5.5 | 3 | 298.15 | 196 | 3.28 |
2.56 | 5.5 | 3 | 298.15 | 220 | 3.39 |
2.95 | 5.5 | 3 | 298.15 | 226 | 3.43 |
3.34 | 5.5 | 3 | 298.15 | 233 | 3.54 |
2.56 | 5.5 | 2 | 298.15 | 262 | 2.14 |
2.56 | 5.5 | 2.5 | 298.15 | 227 | 2.58 |
2.56 | 5.5 | 3 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 3.5 | 298.15 | 199 | 3.12 |
2.56 | 5.5 | 4 | 298.15 | 188 | 3.37 |
2.56 | 5.15 | 2 | 298.15 | 181 | 3.54 |
2.56 | 5.39 | 2 | 298.15 | 177 | 3.65 |
2.56 | 5.44 | 2 | 298.15 | 173 | 3.75 |
2.56 | 5.58 | 2 | 298.15 | 164 | 4.01 |
2.56 | 5.68 | 2 | 298.15 | 159 | 4.15 |
2.56 | 5.7 | 2 | 298.15 | 153 | 4.33 |
2.56 | 5.73 | 2 | 298.15 | 148 | 4.50 |
2.56 | 5.83 | 2 | 298.15 | 137 | 4.84 |
2.56 | 5.95 | 2 | 298.15 | 134 | 4.95 |
1.77 | 5.5 | 2 | 298.15 | 215 | 2.80 |
2.16 | 5.5 | 2 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 2 | 298.15 | 201 | 3.07 |
2.95 | 5.5 | 2 | 298.15 | 197 | 3.15 |
3.34 | 5.5 | 2 | 298.15 | 193 | 3.26 |
1 | 周理明, 史永永, 李海洋, 等. 氨法烟气脱硫过程的工艺优化[J]. 化学工程, 2014, 42(4): 7-12. |
ZhouL M, ShiY Y, LiH Y, et al. Process optimization of ammonia process flue gas desulfurization process[J]. Chemical Engineering, 2014, 42(4): 7-12. | |
2 | 黄荣廷, 潘丹萍, 盛溢, 等. 氨法烟气脱硫过程中气溶胶颗粒生成特性[J]. 化工学报, 2015, 66(11): 4366-4372. |
HuangR T, PanD P, ShengY, et al. Aerosol particle formation characteristics in ammonia flue gas desulfurization process[J]. CIESC Journal, 2015, 66(11): 4366-4372. | |
3 | GaoH, LiC, ZengG, et al. Flue gas desulphurization based on limestone-gypsum with a novel wet-type PCF device[J]. Separation and Purification Technology, 2011, 76(3): 253-260. |
4 | 李锦时, 朱卫兵, 周金哲, 等. 喷雾干燥半干法烟气脱硫效率主要影响因素的实验研究[J]. 化工学报, 2014, 65(2): 724-730. |
LiJ S, ZhuW B, ZhouJ Z, et al. Experimental study on main influencing factors of spray drying semi-dry flue gas desulfurization efficiency[J]. CIESC Journal, 2014, 65(2): 724-730. | |
5 | 蔡毅, 程乐鸣, 许霖杰, 等. 循环流化床锅炉组合脱硫系统运行策略研究[J]. 中国电机工程学报, 2017, (1): 161-172. |
CaiY, ChengL M, XuL J, et al. Research on operation strategy of combined fluidized bed boiler combined desulfurization system[J]. Proceedings of the CSEE, 2017, (1): 161-172. | |
6 | GaoX, DingH, DuZ, et al. Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization [J]. Applied Energy, 2010, 87(8): 2647-2651. |
7 | JiaY, ZhongQ, FanX, et al. Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process [J]. Chemical Engineering Journal, 2010, 164(1): 132-138. |
8 | WangS J, ZhuP, ZhangG, et al. Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower [J]. Journal of the Energy Institute, 2015, 88(3): 284-291. |
9 | HeB, ZhengX, WenY, et al. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing [J]. Energy Conversion & Management, 2003, 44(13): 2175-2188. |
10 | LongX L, LiW, XiaoW D, et al. Novel homogeneous catalyst system for the oxidation of concentrated ammonium sulfite [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 260. |
11 | JiaY, YinL, XuY, et al. A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system [J]. Atmospheric Pollution Research, 2015, 6(6): 997-1003. |
12 | KajiR, HishinumaY, KurodaH. SO2 absorption by water droplets[J]. Journal of Chemical Engineering of Japan, 2006, 18(2): 169-172. |
13 | JavedK H, MahmudT, PurbaE. Enhancement of mass transfer in a spray tower using swirling gas flow [J]. Chemical Engineering Research & Design, 2006, 84(6): 465-477. |
14 | YiZ, XiangG, WangH, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. |
15 | 孙忠伟, 周屈兰, 惠世恩, 等. 气液双流程烟气脱硫塔内脱硫效率与传质性能的研究[J]. 热能动力工程, 2010, (3): 326-329. |
SunZ W, ZhouQ L, HuiS E, et al. Study on desulfurization efficiency and mass transfer performance in gas-liquid dual-flow flue gas desulfurization tower[J]. Thermal Power Engineering, 2010, (3): 326-329. | |
16 | HuL, WamgX, YuG, et al. Study on gas–liquid phase mass transfer coefficient of entrained flow reactor[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 278-283. |
17 | MarionM, LepinasseE, SaboniA. SO2 absorption and desorption by an accelerating water droplet undergoing vaporization [J]. International Journal of Heat & Fluid Flow, 2006, 27(2): 290-297. |
18 | HixsonA W, ScottC E. Absorption of gases in spray towers [J]. Ind. Eng. Chem., 1935, 27: 307-314. |
19 | SchmidtD I B, StichlmairD I J. Two-phase flow and mass transfer in scrubbers [J]. Chemical Engineering & Technology, 1991, 14(3): 162-166. |
20 | CodoloM C, BizzoW A. Experimental study of the SO2, removal efficiency and volumetric mass transfer coefficients in a pilot-scale multi-nozzle spray tower [J]. International Journal of Heat & Mass Transfer, 2013, 66(6): 80-89. |
21 | BandyopadhayA, BiswasM N. Scrubbing of sulphur dioxide in a dual-flow scrubber[J]. J. India. Assoc. Environ. Manage, 1998, 26: 113-133. |
22 | ColleS, ThomasD, VanderschurenJ. Process simulation of sulphur dioxide abatement with hydrogen peroxide solutions in a packed column [J]. Chemical Engineering Research & Design, 2005, 83(1): 81-87. |
23 | LiuX, GuoZ, RoacheN F, et al. Henry s law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions [J]. Environmental Science & Technology, 2015, 49(3): 1603-1610. |
24 | MichalskiJ A. Aerodynamic characteristics of flue gas desulfurization spray towers polydispersity consideration [J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3314-3324. |
25 | 戴干策, 陈敏恒. 化工流体力学[M]. 北京: 化学工业出版社, 1988.Dai G C, Chen M H. Chemical Engineering Fluid Mechanics [M]. Beijing: Chemical Industry Press, 1988. |
26 | FoglerH S. Elements of Chemical Reaction Engineering[M]. 4th ed. Prentice-Hall PTR, 2006. |
27 | MounsefJ R, SalamehD, LoukaN, et al. The effect of aeration conditions, characterized by the volumetric mass transfer coefficient KLa, on the fermentation kinetics of Bacillus thuringiensis kurstaki [J]. Journal of Biotechnology, 2015, 210: 100-106. |
28 | 刘敦禹, WallTerry, StangerRohan. 富氧燃烧烟气冷凝塔钠碱法脱硫过程SO2和CO2共同吸收建模与实验研究[J]. 化工学报, 2018, 69(9): 4019-4029. |
LiuD Y, WallT, StangerR. Experimental and modelling study on co-absorption of SO2 and CO2 during desulfurization process by flue gas cooler for pxy-fuel combustion flues gas[J]. CIESC Journal, 2018, 69(9): 4019-4029. | |
29 | MaS, ZangB, SongH, et al. Research on mass transfer of CO2, absorption using ammonia solution in spray tower [J]. International Journal of Heat & Mass Transfer, 2013, 67(12): 696-703. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[14] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[15] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 621
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 673
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||