1 |
Padhi A K , Nanjundaswamy K S , Goodenough J B . Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1997, 144(4): 1188-1194.
|
2 |
Wu K , Du K , Hu G . Red-blood-cell-like (NH4)[Fe2(OH)(PO4)2]·2H2O particles: fabrication and application in high-performance LiFePO4 cathode materials[J]. J. Mater. Chem. A, 2017, 6(3): 1057-1066.
|
3 |
Zaghib K , Ravet N , Gauthier M , et al . Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by squid magnetometry[J]. J. Power Sources, 2016, 163(1): 560-566.
|
4 |
Anseán D , Dubarry M , Devie A , et al . Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging[J]. J. Power Sources, 2016, 321: 201-209.
|
5 |
Kang B , Ceder G . Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193.
|
6 |
Xie H M , Wang R S , Ying J R , et al . Optimized LiFePO4 polyacene cathode material for lithium ion batteries[J]. Adv. Mater., 2010, 18(19): 2609-2613.
|
7 |
Padhi A K , Nanjundaswamy K S , Masquelier C , et al . Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc., 1997, 144(5): 1609-1613.
|
8 |
Zhang J , Lu J , Bian D , et al . Solvothermal synthesis of hierarchical LiFePO4 microplates with exposed (010) faces as cathode materials for lithium ion batteries[J]. Ind. Eng. Chem. Res., 2014, 53(31): 12209-12215.
|
9 |
黄富勤, 唐新村, 肖元化, 等 . 鸟巢状分级结构LiFePO4的合成及其电化学性能研究[J]. 无机化学学报, 2014, 30(2): 235-241.
|
|
Huang F Q , Tang X C , Xiao Y H , et al . Synthesis and electrochemical properties of LiFePO4 hierarchically nest like microstructures[J]. Chin. J. Inorg. Chem., 2014, 30(2): 235-241.
|
10 |
Wu G , Liu N , Gao X , et al . A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life[J]. Appl. Surf. Sci., 2018, 435: 1329-1336.
|
11 |
Scipioni R , Jørgensen P S , Ngo D T , et al . Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes[J]. J. Power Sources, 2016, 307: 259-269.
|
12 |
Fischer M G , Xiao H , Wilts B D , et al . Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium ion batteries[J]. ACS Appl. Mat. Interfaces, 2018, 10(2): 1646.
|
13 |
方谋, 王要武, 尚玉明, 等 . 水热法合成LiFePO4/C纳米复合材料[J]. 化工学报, 2013, 64(S1): 194-197.
|
|
Fang M , Wang Y W , Shang Y M , et al . Hydrothemrmal synthesis of LiFePO4/C nano composite material[J]. CIESC Journal, 2013, 64(S1): 194-197.
|
14 |
Wang H , Wang R , Liu L , et al . In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast rate capability for high-power Li-ion batteries[J]. Nano Energy, 2017, 39: 346-354.
|
15 |
Wei X , Guan Y , Zheng X , et al . Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Appl. Surf. Sci., 2018, 440: 748-754.
|
16 |
Susantyoko R A , Karam Z , Alkhoori S , et al . A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets[J]. J. Mater. Chem. A, 2017, 5(36): 19255-19266.
|
17 |
Bao L , Xu G , Sun X , et al . Mono-dispersed LiFePO4@C core-shell [001] nanorods for a high power Li-ion battery cathode[J]. J. Alloys Compd., 2017, 708: 685-693.
|
18 |
Wang B , Xu B , Liu T , et al . Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries[J]. Nanoscale, 2014, 6(2): 986-95.
|
19 |
谷和云, 李昇, 李二锐,等 . 镁离子掺杂磷酸铁锂的制备及其电化学性能[J]. 无机盐工业, 2016, 48(1): 64-67.
|
|
Gu H Y , Li S , Li E R , et al . Synthesis and electrochemical performance of magnesium ion doped lithium iron phosphate[J]. Inorg. Chem. Ind., 2016, 48(1): 64-67.
|
20 |
Saroha R , Panwar A K , Sharma Y , et al . Development of surface functionalized ZnO-doped LiFePO4/C composites as alternative cathode material for lithium ion batteries[J]. Appl. Surf. Sci., 2017, 394: 25-36.
|
21 |
Paolella A , Turner S , Bertoni G , et al . Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ [J]. Nano Letters, 2016, 16(4): 2692-2697.
|
22 |
Wang G , Ma Z , Shao G , et al . Synthesis of LiFePO4@carbon nanotube core-shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes[J]. J. Power Sources, 2015, 291: 209-214.
|
23 |
Chen M , Wang X , Shu H , et al . Solvothermal synthesis of monodisperse micro-nanostructure starfish-like porous LiFePO4 as cathode material for lithium-ion batteries[J]. J. Alloys Compd., 2015, 652: 213-219.
|
24 |
Pei B , Yao H , Zhang W , et al . Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries[J]. J. Power Sources, 2012, 220(4): 317-323.
|
25 |
郑贞苗, 唐新村, 汪洋, 等 . 溶剂热法合成花状分级结构LiFePO4及其电化学性能研究[J]. 无机化学学报, 2015, 31(4): 731-738.
|
|
Zheng Z M , Tang X C , Wang Y , et al . Solvothermal synthesis and electrochemical performance of flower like LiFePO4 hierarchically microstructures[J]. Chin. J. Inorg. Chem., 2015, 31(4): 731-738.
|
26 |
Islam M S , Driscoll D J , Fisher C A J , et al . Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material[J]. Chem. Mater., 2005, 17(20): 5085-5092.
|
27 |
Su J , Wu X L , Yang C P , et al . Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source[J]. J. Phys. Chem. C, 2012, 116(1): 5019-502.
|
28 |
Guo Y G , Hu J S , Wan L J . Nanostructured materials for electrochemical energy conversion and storage devices[J]. Adv. Mater., 2008, 20(15): 2878-2887.
|
29 |
Liu Y , Zhang J Y , Li Y , et al . Solvothermal synthesis of a hollow micro-sphere LiFePO4/C composite with a porous interior structure as a cathode material for lithium ion batteries[J]. Nanomaterials, 2017, 7(11): 368-380.
|
30 |
Liu T , Qiu J , Wang B , et al . Dual roles of iron powder on the synthesis of LiFePO4@C/graphene cathode a nanocomposite for high-performance lithium ion batteries[J]. RSC Adv., 2015, 5(121): 100018-100023
|