化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1591-1604.DOI: 10.11949/j.issn.0438-1157.20181453
林茂1(),李伙生2,张高生2,张平1,龙建友3,肖唐付3,张鸿郭3,4,熊静芳3,陈永亨1,2()
收稿日期:
2018-12-05
修回日期:
2019-01-24
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
陈永亨
作者简介:
<named-content content-type="corresp-name">林茂</named-content>(1993—),男,硕士研究生,<email>13253420204@qq.com</email>|陈永亨(1954—),男,博士,教授,<email>chenyong_heng@163.com</email>
基金资助:
Mao LIN1(),Huosheng LI2,Gaosheng ZHANG2,Ping ZHANG1,Jianyou LONG3,Tangfu XIAO3,Hongguo ZHANG3,4,Jingfang XIONG3,Yongheng CHEN1,2()
Received:
2018-12-05
Revised:
2019-01-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Yongheng CHEN
摘要:
以铁酸镍和葡萄糖为原料构建炭包裹的磁性水热炭(NiFe2O4@C)作为可重复利用的高效吸附剂,并催化次氯酸根协同氧化以去除废水中的铊。考察了初始pH、混凝pH、反应温度、共存物和氧化剂投加量等因素对除铊的影响,结合X射线粉末衍射仪(XRD)、X射线光电子能谱(XPS)和电子自旋共振光谱仪(ESR)等表征手段探究了其除铊机理。在铊初始浓度20 mg/L、初始pH 10、吸附剂投加量0.5 g/L、次氯酸钠投量10 mmol/L时,铊去除率达到99%以上。Ca2+、Mg2+、EDTA、DPTA抑制除铊。吸附过程更适合拟一级动力学模型,等温吸附更适用于Langmuir和Temkin方程描述,最大铊吸附量达989 mg/g。NiFe2O4@C对Tl(I)的去除机理主要为氧化沉淀和表面羟基络合。材料再生实验表明NiFe2O4@C有很好的脱附与再生能力。本研究为废水除铊提供了一定的理论和技术参考依据。
中图分类号:
林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
Mao LIN, Huosheng LI, Gaosheng ZHANG, Ping ZHANG, Jianyou LONG, Tangfu XIAO, Hongguo ZHANG, Jingfang XIONG, Yongheng CHEN. Removal of Tl from wastewater by nickel ferrite-based hydrothermal carbon coupled with hypochlorite oxidation[J]. CIESC Journal, 2019, 70(4): 1591-1604.
元素 | 质量比/% | 原子量比/% | ||||
---|---|---|---|---|---|---|
吸附前 | 吸附后 | 洗脱后 | 吸附前 | 吸附后 | 洗脱后 | |
C | 25.80 | 29.40 | 20.73 | 41.85 | 54.27 | 39.85 |
N | 1.09 | 0.60 | 0.25 | 1.52 | 0.96 | 0.41 |
O | 35.87 | 21.86 | 26.19 | 43.81 | 30.29 | 37.80 |
S | 0.04 | 0.06 | 0.08 | 0.03 | 0.04 | 0.06 |
Cl | 0.03 | 0.43 | 1.67 | 0.02 | 0.26 | 1.09 |
Fe | 24.60 | 21.60 | 35.64 | 8.60 | 8.58 | 14.73 |
Ni | 12.57 | 10.32 | 15.41 | 4.18 | 3.9 | 6.06 |
Tl | 0.00 | 15.74 | 0.02 | 0.00 | 1.71 | 0.00 |
sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
表1 反应前后EDS元素含量变化
Table 1 EDS-based elemental content before and after reaction
元素 | 质量比/% | 原子量比/% | ||||
---|---|---|---|---|---|---|
吸附前 | 吸附后 | 洗脱后 | 吸附前 | 吸附后 | 洗脱后 | |
C | 25.80 | 29.40 | 20.73 | 41.85 | 54.27 | 39.85 |
N | 1.09 | 0.60 | 0.25 | 1.52 | 0.96 | 0.41 |
O | 35.87 | 21.86 | 26.19 | 43.81 | 30.29 | 37.80 |
S | 0.04 | 0.06 | 0.08 | 0.03 | 0.04 | 0.06 |
Cl | 0.03 | 0.43 | 1.67 | 0.02 | 0.26 | 1.09 |
Fe | 24.60 | 21.60 | 35.64 | 8.60 | 8.58 | 14.73 |
Ni | 12.57 | 10.32 | 15.41 | 4.18 | 3.9 | 6.06 |
Tl | 0.00 | 15.74 | 0.02 | 0.00 | 1.71 | 0.00 |
sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
拟合模型 | 参数 | 数值 |
---|---|---|
拟一级动力学模型 | Q e /(mg/g) | 399.011 |
| K 1/h-1 | 3.733 |
R 2 | 0.981 | |
拟二级动力学模型 | Q e/(mg/g) | 400 |
| K 2 /(g/(mg·h)) | 0.015 |
R 2 | 0.953 |
表2 拟一、二级动力学模型参数
Table 2 Pseudo-first and second-order kinetic model parameters
拟合模型 | 参数 | 数值 |
---|---|---|
拟一级动力学模型 | Q e /(mg/g) | 399.011 |
| K 1/h-1 | 3.733 |
R 2 | 0.981 | |
拟二级动力学模型 | Q e/(mg/g) | 400 |
| K 2 /(g/(mg·h)) | 0.015 |
R 2 | 0.953 |
铊初始浓度/ (mg/L) | 膜扩散 | 颗粒内扩散 | 平衡吸附 | ||||||
---|---|---|---|---|---|---|---|---|---|
K p1/ (mg/(g·h1/2)) | C/(mg/L) | R 2 | K p2/ (mg/(g·h1/2)) | C/(mg/L) | R 2 | K p3/(mg/(g·h1/2)) | C/(mg/L) | R 2 | |
200 | 140.32 | 35.40 | 0.944 | 632.80 | -85.49 | 0.934 | 9.29 | 381.54 | 0.427 |
表3 内扩散模型动力学参数
Table 3 Kinetic parameters of intra-diffusion model
铊初始浓度/ (mg/L) | 膜扩散 | 颗粒内扩散 | 平衡吸附 | ||||||
---|---|---|---|---|---|---|---|---|---|
K p1/ (mg/(g·h1/2)) | C/(mg/L) | R 2 | K p2/ (mg/(g·h1/2)) | C/(mg/L) | R 2 | K p3/(mg/(g·h1/2)) | C/(mg/L) | R 2 | |
200 | 140.32 | 35.40 | 0.944 | 632.80 | -85.49 | 0.934 | 9.29 | 381.54 | 0.427 |
Langmuir 模型 | Freundlich 模型 | Temkin 模型 | ||||||
---|---|---|---|---|---|---|---|---|
Q m/(mg/g) | K L/(L/mg) | R 2 | K F/(L/g) | n | R 2 | A/(L/g) | b/(kJ/mol) | R 2 |
989 | 0.649 | 0.890 | 300 | 4.563 | 0.816 | 0.729 | 0.013 | 0.875 |
表4 NiFe2O4@C对Tl吸附的Langmuir、Freundlich和Temkin等温线参数
Table 4 Langmuir, Freundlich and Temkin isotherm parameters for NiFe2O4@C adsorption of Tl
Langmuir 模型 | Freundlich 模型 | Temkin 模型 | ||||||
---|---|---|---|---|---|---|---|---|
Q m/(mg/g) | K L/(L/mg) | R 2 | K F/(L/g) | n | R 2 | A/(L/g) | b/(kJ/mol) | R 2 |
989 | 0.649 | 0.890 | 300 | 4.563 | 0.816 | 0.729 | 0.013 | 0.875 |
1 | Belzile N , Chen Y W . Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles [J]. Applied Geochemistry, 2017, 84: 218-243. |
2 | Peter A L J , Viraraghavan T . Thallium: a review of public health and environmental concerns [J]. Environment International, 2005, 31(4): 493-501. |
3 | Li P , Zhang J , Wang J , et al . Heavy metal(loid) pollution in mine wastes of a Carlin-type gold mine in southwestern Guizhou, China and its environmental impacts [J]. Chinese Journal of Geochemistry, 2015, 34(3): 311-319. |
4 | Liu J , Luo X , Wang J , et al . Thallium contamination in arable soils and vegetables around a steel plant—a newly-found significant source of Tl pollution in South China [J]. Environmental Pollution, 2017, 224: 445-453. |
5 | Chen Y , Wang C , Liu J , et al . Environmental exposure and flux of thallium by industrial activities utilizing thallium-bearing pyrite [J]. Science China Earth Sciences, 2013, 56(9): 1502-1509. |
6 | Martin L A , Wissocq A , Benedetti M F , et al . Thallium (Tl) sorption onto illite and smectite: implications for Tl mobility in the environment [J]. Geochimicaet Cosmochimica Acta, 2018, 230: 1-16. |
7 | 吴颖娟, 陈永亨, 王正辉, 等 . 环境介质中铊的分布和运移综述[J]. 地球与环境, 2001, 29(1): 52-56. |
Wu Y J , Chen Y H , Wang Z H , et al . A summary of the distribution and migration of thallium in environmental media [J]. Geology-Geochemistry, 2001, 29(1): 52-56. | |
8 | Pu Y , Yang X , Zheng H , et al . Adsorption and desorption of thallium(Ⅰ) on multiwalled carbon nanotubes[J]. Chemical Engineering Journal, 2013, 219: 403-410. |
9 | Zhang G , Fan F , Li X , et al . Superior adsorption of thallium(Ⅰ) on titanium peroxide: performance and mechanism [J]. Chemical Engineering Journal, 2018, 331: 471-479. |
10 | Memon S Q , Memon N , Solangi A R , et al . Sawdust: a green and economical sorbent for thallium removal [J]. Chemical Engineering Journal, 2008, 140(1/2/3): 235-240. |
11 | 邓红梅, 王耀龙, 吴宏海, 等 . γ-MnO2对Tl(Ⅰ)的吸附性能 [J]. 环境科学研究, 2015, 28(1): 103-109. |
Deng H M , Wang Y L , Wu H H , et al .Characteristics of Tl(Ⅰ) adsorption on γ-MnO2 [J]. Research of Environmental Sciences, 2015, 28 (1): 103-109. | |
12 | 黄秋安, 邓辉辉, 姚利兵, 等 .碳包覆MnFe2O4(MnFe2O4@C)纳米球的制备及其对重金属离子[Cu(Ⅱ)、Pb(Ⅱ)]的去除 [J]. 广东化工, 2017, 44(347): 12-14. |
Huang Q A , Deng H H , Yao L B , et al .Synthesis of carbon-coated MnFe2O4 nanospheres for heavy metals [copper (Ⅱ) and lead (Ⅱ)] removal [J]. Guangdong Chemical Industry, 2017, 44(347): 12-14. | |
13 | Paulraj A , Kiros Y , Göthelid M , et al . NiFeO x as a bifunctional electrocatalyst for oxygen reduction (OR) and evolution (OE) reaction in alkaline media [J]. Catalysts, 2018, 8(8): 328. |
14 | Naushad M , Ahamad T , Al-Maswari B M , et al . Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium [J]. Chem. Eng. J., 2017, 330: 1351-1360. |
15 | 许杰龙 任随周, 张国霞, 等 . pH及浓度对次氯酸钠除藻效果的影响 [J]. 安徽农业科学, 2011, 39(17): 10353-10355. |
Xu J L , Ren S Z , Zhang G X , et al . Study on algae removal effect of sodium hypochlorite under different concentration and pH value [J]. Journal of Anhui Agricultural Sciences, 2011, 39(17): 10353-10355. | |
16 | Wang T , Jiang Z , An T , et al . Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles [J]. Environmental Science & Technology, 2018, 52(8): 4774-4784. |
17 | Li X , Tang D , Tang F , et al . Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe2O4 nanocomposites [J]. Materials Research Bulletin, 2014, 56: 125-133. |
18 | Villar Da Gama B M , Elisandra Do Nascimento G , Silva Sales D C , et al . Mono and binary component adsorption of phenol and cadmium using adsorbent derived from peanut shells [J]. Journal of Cleaner Production, 2018, 201: 219-228. |
19 | 李冬 . 基于碳量子点荧光探针的Cr(Ⅵ)定量测定方法研究 [D]. 重庆: 重庆大学, 2017. |
Li D . Study on the quantitative determination of Cr(Ⅵ) based on carbon quantum dots as fluorescence probes [D]. Chongqing: Chongqing University, 2017. | |
20 | Wang Y , Zhang W , Luo C , et al . Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@SiO2-decorated reduced graphene oxide nanosheets [J]. Ceramics International, 2016, 42(15): 17374-17381. |
21 | Goudarzi M , Salavati-Niasari M , Motaghedifard M , et al . Semiconductive Tl2O3 nanoparticles: facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor [J]. Journal of Molecular Liquids, 2016, 219: 720-727. |
22 | Hu Z , Shen Z , Yu J C . Converting carbohydrates to carbon-based photocatalysts for environmental treatment [J]. Environmental Science & Technology, 2017, 51(12): 7076-7083. |
23 | Li H J , Zhou X D , Di Y H , et al . Effect of Si-ATP/CTAB ratio on crystal morphology, pore structure and adsorption performance of hierarchical (H) ZSM-11 zeolite [J]. Microporous and Mesoporous Materials, 2018, 271: 146-155. |
24 | Li H , Li X , Xiao T , et al . Efficient removal of thallium(Ⅰ) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder [J]. Chemical Engineering Journal, 2018, 353: 867-877. |
25 | Zhao R , Li X , Sun B , et al . Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal [J]. Chemical Engineering Journal, 2015, 268: 290-299. |
26 | 黎秀菀, 李伙生, 张平, 等 . MnO2@矿渣去除废水中的铊 [J]. 环境工程学报, 2018, 12(3): 720-730. |
Li X W , Li H S , Zhang P , et al . Removal of thallium from wastewater using MnO2@slag [J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 720-730. | |
27 | Biela R , Kučera T . Efficacy of sorption materials for nickel, iron and manganese removal from water [J]. Procedia Engineering, 2016, 162: 56-63. |
28 | Hashmi M S J , Rashid A , Ayaz A A , et al . Indirect determination of hypochlorite and hypobromite by thallium [J]. Analytical Chemistry, 1966, 38(3): 507-508. |
29 | Dash H R , Mangwani N , Das S . Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05 [J]. Environmental Science and Pollution Research, 2014, 21(4): 2642-2653. |
30 | Zhi S , Tian L , Li N , et al . A novel system of MnO2-mullite-cordierite composite particle with NaClO for Methylene blue decolorization [J]. Journal of Environmental Management, 2018, 213: 392-399. |
31 | Kim K W , Lee E H , Chung D Y , et al . Manufacture characteristics of metal oxide–hydroxides for the catalytic decomposition of a sodium hypochlorite solution [J]. Chemical Engineering Journal, 2012, 200/201/202: 52-58. |
32 | Huangfu X , Jiang J , Lu X , et al . Adsorption and oxidation of thallium(Ⅰ) by a nanosized manganese dioxide [J]. Water, Air, & Soil Pollution, 2015, 226(1): 2272. |
33 | Carlos E , Estrela C R A , Luis B E , et al . Mechanism of action of sodium hypochlorite[J]. Braz. Dent. J., 2002, 13(2): 113-117. |
34 | Zhao Y , Qiu W , Yang C , et al . Removal of arsenic from flue gas by using NaClO solution [J]. Chemical Engineering Journal, 2017, 309: 1-6. |
35 | Yang S , Han Z , Pan X , et al . Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: efficiency optimization and pH-dependent mechanisms [J]. Chemical Engineering Journal, 2018, 354: 653-662. |
36 | Li K , Li H , Xiao T , et al . Removal of thallium from wastewater by a combination of persulfate oxidation and iron coagulation [J]. Process Safety and Environmental Protection, 2018, 119: 340-349. |
37 | Li H , Li X , Chen Y , et al . Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process [J]. Journal of Cleaner Production, 2018, 199: 705-715. |
38 | Li H , Chen Y , Long J , et al . Removal of thallium from aqueous solutions using Fe-Mn binary oxides [J]. Journal of Hazardous Materials, 2017, 338: 296-305. |
39 | 王建伟, 孙力平, 员建, 等 . 腐殖酸钠对钙、镁离子吸附效果的研究[J]. 环境科学与管理, 2008, 33(12): 37-40. |
Wang J W , Sun L P , Yuan J , et al . Study on adsorption effect of Ca2+&Mg2+ ion with sodium humic acid [J]. Environmental Science and Management, 2018, 33(12): 37-40. | |
40 | Dadfarnia S , Assadollahi T , Haji Shabani A M . Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent [J]. Journal of Hazardous Materials, 2007, 148(1/2): 446-452. |
41 | Li N , Tian Y , Zhao J , et al . Ultrafast selective capture of phosphorus from sewage by 3D Fe3O4@ZnO via weak magnetic field enhanced adsorption [J]. Chemical Engineering Journal, 2018, 341: 289-297. |
42 | Miyaji A , Kohno M , Inoue Y , et al . Hydroxyl radical generation by dissociation of water molecules during 1.65 MHz frequency ultrasound irradiation under aerobic conditions [J]. Biochem. Biophys. Res. Commun., 2017, 483(1): 178-182. |
43 | Zhang H , Liu J , Ou C , et al . Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process [J]. Journal of Environmental Sciences, 2017, 53: 1-8. |
44 | Casella I G , Spera R . Electrochemical deposition of nickel and nickel–thallium composite oxides films from EDTA alkaline solutions [J]. Journal of Electroanalytical Chemistry, 2005, 578(1): 55-62. |
45 | Wang M , Xia Y , Qiu J , et al . Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas [J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2019, 206: 170-176. |
46 | Hao A , Ismail M , He S , et al . Improved unipolar resistive switching characteristics of Au-doped nickel ferrite magnetic thin films for nonvolatile memory applications [J]. Journal of Alloys and Compounds, 2018, 732: 573-584. |
47 | Singh P , Rana P J S , Mukherjee R , et al . A step towards environmental benign Mg/Pb based binary metal mixed halide perovskite material [J]. Solar Energy, 2018, 170: 769-779. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||