化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1605-1613.DOI: 10.11949/j.issn.0438-1157.20180691
收稿日期:
2018-06-26
修回日期:
2019-01-24
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
张小松
作者简介:
<named-content content-type="corresp-name">邱君君</named-content>(1993—),男,硕士研究生,<email>1103519754@qq.com</email>|张小松(1960—),男,博士,教授,<email>rachpe@seu.edu.cn</email>
基金资助:
Junjun QIU(),Xiaosong ZHANG(),Weihao LI
Received:
2018-06-26
Revised:
2019-01-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Xiaosong ZHANG
摘要:
通过对比现有的空气源热泵空调系统的优缺点,提出了一种新型无霜空气源热泵空调系统。该热泵系统最大的新颖之处在于热交换塔实现了“一塔三用”,不仅冬季可以无霜高效运行与再生,夏季蒸发冷却后性能也有所提升。通过搭建该系统实验平台研究了溶液塔入口空气温湿度、空气流量、溶液入口温度、溶液流量、溶液质量分数对除湿性能及空气出口温度与溶液出口温度的影响,结果表明:出口空气与溶液温度随入口空气温湿度、流量、溶液温度、质量分数的升高,溶液流量的下降而升高;溶液塔的除湿效率主要受风量和溶液流量的影响,而入口空气温湿度、入口溶液温度、溶液质量分数影响很小,溶液塔的除湿量随着室外空气湿度的升高、入口溶液温度的降低、空气流量和溶液流量的升高而升高。
中图分类号:
邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
Junjun QIU, Xiaosong ZHANG, Weihao LI. Experimental research on a novel frost-free air source heat pump system[J]. CIESC Journal, 2019, 70(4): 1605-1613.
测量参数 | 工具编号 | 测量精度 |
---|---|---|
水温与制冷剂温度 | WZPK-163S | ±0.1℃ |
空气温湿度 | HMT120 | ±1% |
压力 | MPM480 | ±1% |
流量 | LWY-15E | ±1% |
功率 | WT310 | ±1% |
表1 测量设备详细参数
Table 1 Measuring equipment parameters
测量参数 | 工具编号 | 测量精度 |
---|---|---|
水温与制冷剂温度 | WZPK-163S | ±0.1℃ |
空气温湿度 | HMT120 | ±1% |
压力 | MPM480 | ±1% |
流量 | LWY-15E | ±1% |
功率 | WT310 | ±1% |
参数 | 范围 | 基准 |
---|---|---|
入口空气温度/℃ | -4~2.5 | 2.5 |
入口空气湿度/(g/(kg dry air)) | 2~2.35 | 2 |
空气体积流量/(m3/h) | 392~1241 | 1241 |
入口溶液温度/℃ | -7~-3 | -7 |
溶液体积流量/(m3/h) | 0.27~0.94 | 0.94 |
溶液质量分数 | 0.25~0.35 | 0.25 |
表2 空气及溶液入口参数
Table 2 Inlet air and solution parameters
参数 | 范围 | 基准 |
---|---|---|
入口空气温度/℃ | -4~2.5 | 2.5 |
入口空气湿度/(g/(kg dry air)) | 2~2.35 | 2 |
空气体积流量/(m3/h) | 392~1241 | 1241 |
入口溶液温度/℃ | -7~-3 | -7 |
溶液体积流量/(m3/h) | 0.27~0.94 | 0.94 |
溶液质量分数 | 0.25~0.35 | 0.25 |
1 | Nishimura T . “Heat pumps status and trends” in Asia and the Pacific[J]. International Journal of Refrigeration, 2002, 25(4): 405-413. |
2 | Stoecker W F . How frost formation on coils affects refrigeration systems[J]. Refrigeration Engineering, 1957, 65(2): 42-46. |
3 | Barrow H . A note on frosting of heat pump evaporator surfaces[J]. Heat Recovery System, 1985, 5(3): 195-201. |
4 | Yao Y , Jiang Y Q , Deng S M .et al. A study on the performance on the airside heat exchanger under frosting in air-source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3745-3756. |
5 | 王峰, 梁彩华, 张小松 . 超疏水翅片表面的抑霜机理及除霜特性[J]. 工程热物理学报, 2016, (5): 1066-1070. |
Wang F , Liang C H , Zhang X S . Frost inhibition mechanism and defrosting characteristics of ultrahydrophobic fin surfaces[J]. Journal of Engineering Thermophysics, 2016, (5): 1066-1070. | |
6 | 王峰, 梁彩华, 吴春晓, 等 . 疏水铝翅片表面的结霜/融霜特性[J]. 中南大学学报(自然科学版), 2016, (4): 1368-1373. |
Wang F , Liang C H , Wu C X , et al . Frosting/defrosting characteristics of hydrophobic aluminum fin surfaces [J]. Journal of Central South University(Science and Technology), 2016, (4): 1368-1373. | |
7 | Wang F , Liang C H , Yang M T , et al . Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin [J]. Applied Thermal Engineering, 2016, (107): 479-492. |
8 | 张又升, 赵敬德, 王金龙 .空气源热泵室外换热器翅片管的融霜过程分析[J]. 流体机械, 2016, (6): 66-71. |
Zhang Y S , Zhao J D , Wang J L . Analysis on defrosting process of fin tube of air source heat pump outdoor heat exchanger[J]. Fluid Machinery, 2016, (6): 66-71. | |
9 | Kim J , Choi H J , Kim K C . A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied Energy, 2015, 147: 344 -352. |
10 | 谭海辉, 陶唐飞, 徐光华, 等 . 翅片管式蒸发器超声波除霜理论与技术研究[J]. 西安交通大学学报, 2015, (9): 105-113. |
Tan H H , Tao T F , Xu G H , et al . Study on ultrasonic defrosting theory and technology of finned tube evaporator[J]. Journal of Xi’an Jiaotong University, 2015, (9): 105-113. | |
11 | Tan H H , Xu G G , Tao T F , et al . Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting[J]. Applied Thermal Engineering, 2016, 107: 479-492. |
12 | 孙家正 . 空气源热泵除霜方法的研究现状及展望[J]. 建筑热能通风空调, 2017, 36(8): 42-46. |
Sun J Z . Present state and prospect of defrosting method for air source heat pump[J]. Building Energy & Environment, 2017, 36(8): 42-46. | |
13 | 韩志涛, 姚杨, 马最良, 等 . 空气源热泵误除霜特性的实验研究[J]. 暖通空调, 2006, 36(2): 15-19. |
Han Z T , Yao Y , Ma Z L , et al . Experiment on characteristics of an air source heat pump in false defrosting[J]. Heating Ventilation & Air Conditioning, 2006, 36(2): 15-19. | |
14 | 张杰, 兰菁, 杜瑞环, 等 . 几种空气源热泵除霜方式的性能比较[J]. 制冷学报, 2012, 33(2): 47-49. |
Zhang J , Lan J , Du R H , et al . The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of Refrigeration, 2012, 33(2): 47-49. | |
15 | 曹小林, 曹双俊, 段飞, 等 . 空气源热泵除霜问题研究现状与展望[J]. 流体机械, 2011, 39(4): 75-79. |
Cao X L , Cao S J , Duan F , et al . Current situation and development prospect of air source heat pump defrosting research[J]. Fluid Machinery, 2011, 39(4): 75-79. | |
16 | 李九如, 孔祥鹏, 王妍, 等 . 空气源热泵除霜动态特性实验台研制[J]. 哈尔滨理工大学学报, 2012, 17(5): 26-28. |
Li J R , Kong X P , Wang Y , et al . Development of air source heat pump defrosting structures bench[J]. Journal of Harbin University of Science and Technology, 2012, 17(5): 26-28. | |
17 | 龚建英, 袁秀玲 . 空气源热泵蒸发器结霜过程数值模拟[J]. 低温与超导, 2010, 38(5): 53-57. |
Gong J Y , Yuan X L . Simulation study on evaporator frosting process of air source heat pump[J]. Cryogenics & Superconductivity, 2010, 38(5): 53-57. | |
18 | 郭宪民, 王冬丽, 陈轶光, 等 . 室外换热器迎面风速对空气源热泵结霜特性的影响[J]. 化工学报, 2012, 63(S2): 32-37. |
Guo X M , Wang D L , Chen Y G , et al . Effects of face velocity of outdoor heat exchanger on frosting characteristics of air source heat pump system[J]. CIESC Journal , 2012, 63(S2): 32-37. | |
19 | 尹从绪, 陈轶光 . 风速对空气源热泵翅片管换热器结霜特性影响[J]. 低温与超导, 2011, 39(12): 50-52. |
Yin C X , Chen Y G . The effects of wind speed on frosting characteristics of fin-tube heat exchanger for air source heat pump[J]. Cryogenics & Superconductivity, 2011, 39(12): 50-52. | |
20 | 汪峰, 梁彩华, 杨明涛, 等 . 翅片表面融霜水滞留机理及其影响因素[J]. 化工学报, 2014, 65(S2): 101-106. |
Wang F , Liang C H , Yang M T , et al . Mechanism and influence factors of frost melt water retention on fins[J]. CIESC Journal, 2014, 65(S2): 101-106. | |
21 | 薛利平, 郭宪民, 邢震 . 环境参数对翅片管换热器表面结霜特性影响的实验研究[J]. 低温与超导, 2017, 45(4): 66-71. |
Xue L P , Guo X M , Xing Z . Experimental study on frost growth characteristics on surface of finned-tube heat exchanger[J]. Cryogenics & Superconductivity, 2017, 45(4): 66-71. | |
22 | 黄东, 袁秀玲 . 风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比[J]. 西安交通大学学报, 2006, 40(5): 539-543. |
Huang D , Yuan X L . Comparison of dynamic characteristics between the hot-gas bypass defrosting method and reverse-cycle defrosting method on an air-to-water heat pump[J]. Journal of Xi’an Jiaotong University, 2006, 40(5): 539-543. | |
23 | 马素霞, 蒋永明, 温波, 等 . 相变蓄热式蒸发空气源热泵性能的实验研究[J]. 太阳能学报, 2015, (3): 604-609. |
Ma S X , Jiang Y M , Wen B , et al . Experimental study on the performance of phase change heat storage evaporative air source heat pump [J]. Journal of Solar Energy, 2015, (3): 604-609. | |
24 | Zhang L , Fujinawa T , Saikawa M . A new method for preventing air-source heat pump water heaters from frosting[J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334. |
25 | Wang Z H , Zheng Y X , Wang F H . Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70: 808-816. |
26 | Wang Z H , Wang F H , Zheng Y X . Experimental study on a new type of frost-free air source heat pump water heater [J]. Journal of Refrigeration, 2015, 36(1): 52-58. |
27 | Wang Z H , Wang F H , Ma Z J . Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant[J]. Applied Thermal Engineering, 2017, 112: 248-258. |
28 | 梁明坤, 陈传宝, 刘伟 . 板式蒸发冷凝气源热泵的无霜加热试验与验证[J]. 机械制造与自动化(机械制造与自动化), 2016, 45(6): 70-73. |
Liang M K , Chen C B , Liu W . Test & verification of frostless heating of plate-type evaporation-condensation air-source heat pump[J]. Machinery Manufacturing & Automation, 2016, 45(6): 70-73. | |
29 | Jiang Y Q , Fu H Y , Yao Y . Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system[J]. Energy and Buildings, 2014, 68: 707-712. |
30 | Su W , Zhang X S . Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification [J]. Energy and Buildings, 2017, 145: 293-303. |
[1] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[4] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[5] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[6] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[7] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[8] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[9] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[10] | 张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633. |
[11] | 杨田雨, 葛天舒. 干燥剂吸附等温曲线对除湿换热器除湿性能的影响[J]. 化工学报, 2022, 73(12): 5367-5375. |
[12] | 曲泓硕, 张伦, 张小松, 纪文彬. 溶液除湿系统空气状态影响因素[J]. 化工学报, 2021, 72(S1): 210-217. |
[13] | 汪谦旭, 刘益才, 梁恒, 李政, 赵祥乐. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361. |
[14] | 宋哲, 许波, 陈振乾. 管壳式蒸发器内分流板均分性能的研究[J]. 化工学报, 2021, 72(9): 4629-4638. |
[15] | 张昊, 董勇, 赖艳华, 崔琳, 杨潇. 用于燃煤烟气除湿消白的湿电平板降膜模拟及试验研究[J]. 化工学报, 2021, 72(4): 2249-2257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||