化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4629-4638.DOI: 10.11949/0438-1157.20210247
收稿日期:
2021-02-08
修回日期:
2021-06-09
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
陈振乾
作者简介:
宋哲(1996—),男,硕士研究生,Zhe SONG(),Bo XU,Zhenqian CHEN()
Received:
2021-02-08
Revised:
2021-06-09
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhenqian CHEN
摘要:
蒸发器换热管间制冷剂的分配不均会导致其制冷能力的下降。建立了管壳式蒸发器和分流板三维模型,模拟研究了分流板的位置、开孔大小、开孔数量和开孔结构对R410A均分性能的影响。模拟结果表明,分流板各参数对制冷剂均流效果有显著影响。在不同入口流速工况下,不均匀度随分流板向蒸发器入口端的移动而下降且降幅逐渐变缓;不均匀度随开孔直径的增大而上升,随开孔数量的增大而下降并达到稳定;经优化分流板开孔结构,上下小孔结构的均分性能相比等圆孔结构可提高21.4%。搭建了蒸发器流量分配实验台,通过实验验证了模拟得出的流量分配规律以及分流板对流体均分性能的提升,说明根据流量分布特点优化分流板开孔结构能有效提升制冷剂的均流效果。
中图分类号:
宋哲, 许波, 陈振乾. 管壳式蒸发器内分流板均分性能的研究[J]. 化工学报, 2021, 72(9): 4629-4638.
Zhe SONG, Bo XU, Zhenqian CHEN. Study on distribution characteristics of splitter plate in shell and tube evaporator[J]. CIESC Journal, 2021, 72(9): 4629-4638.
结构参数 | 数值 |
---|---|
管箱内径/mm | 200 |
管箱长度/mm | 80 |
换热管规格/mm | 15.9×0.89 |
换热管长度/mm | 1000 |
换热管间距/mm | 25 |
布管方式 | 正三角形 |
分流板孔径/mm | 6 |
分流板孔间距/mm | 10 |
表1 蒸发器模型结构参数
Table 1 Structural parameters of evaporator model
结构参数 | 数值 |
---|---|
管箱内径/mm | 200 |
管箱长度/mm | 80 |
换热管规格/mm | 15.9×0.89 |
换热管长度/mm | 1000 |
换热管间距/mm | 25 |
布管方式 | 正三角形 |
分流板孔径/mm | 6 |
分流板孔间距/mm | 10 |
孔数 | 孔径/mm | 开孔面积/mm2 | 孔隙率 |
---|---|---|---|
277 | 4 | 3480.9 | 0.111 |
277 | 4.5 | 4405.5 | 0.140 |
277 | 5 | 5438.9 | 0.173 |
277 | 5.5 | 6581.0 | 0.210 |
277 | 6 | 7832.0 | 0.249 |
277 | 7 | 10660.2 | 0.339 |
277 | 8 | 13923.5 | 0.443 |
277 | 9 | 17622.0 | 0.561 |
表2 分流板开孔尺寸
Table 2 Opening size of splitter plate
孔数 | 孔径/mm | 开孔面积/mm2 | 孔隙率 |
---|---|---|---|
277 | 4 | 3480.9 | 0.111 |
277 | 4.5 | 4405.5 | 0.140 |
277 | 5 | 5438.9 | 0.173 |
277 | 5.5 | 6581.0 | 0.210 |
277 | 6 | 7832.0 | 0.249 |
277 | 7 | 10660.2 | 0.339 |
277 | 8 | 13923.5 | 0.443 |
277 | 9 | 17622.0 | 0.561 |
孔数/个 | 孔径/mm | 开孔面积/mm2 | 孔隙率 |
---|---|---|---|
277 | 5 | 5438.9 | 0.173 |
193 | 6 | 5456.9 | 0.174 |
141 | 7 | 5426.3 | 0.173 |
97 | 8.4 | 5375.5 | 0.171 |
69 | 10 | 5419.2 | 0.172 |
45 | 12.4 | 5434.3 | 0.173 |
表3 分流板开孔数量
Table 3 Hole counts on splitter plate
孔数/个 | 孔径/mm | 开孔面积/mm2 | 孔隙率 |
---|---|---|---|
277 | 5 | 5438.9 | 0.173 |
193 | 6 | 5456.9 | 0.174 |
141 | 7 | 5426.3 | 0.173 |
97 | 8.4 | 5375.5 | 0.171 |
69 | 10 | 5419.2 | 0.172 |
45 | 12.4 | 5434.3 | 0.173 |
测量仪器 | 测量范围 | 测量精度 |
---|---|---|
气体流量计 | 0~10 L/min | ±2.0% |
0~200 L/min | ±2.5% | |
液体流量计 | 0.7~7 m3/h | ±1.0% |
称重显示器 | 0~30 kg | ±0.01kg |
量杯 | 0~5000 ml | 10 ml |
表4 测量仪器参数和精度
Table 4 Parameters and accuracy of measuring instruments
测量仪器 | 测量范围 | 测量精度 |
---|---|---|
气体流量计 | 0~10 L/min | ±2.0% |
0~200 L/min | ±2.5% | |
液体流量计 | 0.7~7 m3/h | ±1.0% |
称重显示器 | 0~30 kg | ±0.01kg |
量杯 | 0~5000 ml | 10 ml |
1 | Lalot S, Florent P, Lang S K, et al. Flow maldistribution in heat exchangers[J]. Applied Thermal Engineering, 1999, 19(8): 847-863. |
2 | Kulkarni T, Bullard C W, Cho K. Header design tradeoffs in microchannel evaporators[J]. Applied Thermal Engineering, 2004, 24(5/6): 759-776. |
3 | 舒朝晖, 李丛来, 陈焕新, 等. 扁管结构对平行流冷凝器制冷剂侧性能的影响[J]. 化工学报, 2008, 59: 129-133. |
Shu Z H, Li C L, Chen H X, et al. Fiat tube structure on refrigerant-side performance of parallel flow type condenser[J]. Journal of Chemical Industry and Engineering (China), 2008, 59: 129-133. | |
4 | Lee W J, Lee H, Jeong J H. Numerical evaluation of the range of performance deterioration in a multi-port mini-channel heat exchanger due to refrigerant mal-distribution in the header[J]. Applied Thermal Engineering, 2021, 185: 116429. |
5 | Kim N H, Han S P. Distribution of air-water annular flow in a header of a parallel flow heat exchanger[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 977-992. |
6 | Ablanque N, Oliet C, Rigola J, et al. Two-phase flow distribution in multiple parallel tubes[J]. International Journal of Thermal Sciences, 2010, 49(6): 909-921. |
7 | Wu G M, Ren T, Ding G L, et al. Design and visualized validation of a distributor with uniform refrigerant distribution by forming annular flow[J]. International Journal of Refrigeration, 2019, 98: 238-248. |
8 | Pu L, Nian L Z, Zhang D R, et al. Study of refrigerant mal-distribution and optimization in distributor for air conditioner[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101261. |
9 | Wang D D, Liu C C, Yu D J, et al. Influence factors of flow distribution and a feeder tube compensation method in multi-circuit evaporators[J]. International Journal of Refrigeration, 2017, 73: 11-23. |
10 | Wang C C, Yang K S, Tsai J S, et al. Characteristics of flow distribution in compact parallel flow heat exchangers (Ⅰ): Typical inlet header[J]. Applied Thermal Engineering, 2011, 31(16): 3226-3234. |
11 | Mohammadi K, Malayeri M R. Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime[J]. International Journal of Heat and Fluid Flow, 2013, 44: 14-27. |
12 | Mahvi A J, Garimella S. Two-phase flow distribution of saturated refrigerants in microchannel heat exchanger headers[J]. International Journal of Refrigeration, 2019, 104: 84-94. |
13 | 徐肖肖, 肖久旻, 陈龙, 等. 平行流换热器两相流分配模型的建立与验证[J]. 化工学报, 2018, 69(5): 1938-1945. |
Xu X X, Xiao J M, Chen L, et al. Establishment and verification of a two-phase flow distribution model in a parallel flow heat exchanger[J]. CIESC Journal, 2018, 69(5): 1938-1945. | |
14 | Shi J Y, Qu X H, Qi Z G, et al. Investigating performance of microchannel evaporators with different manifold structures[J]. International Journal of Refrigeration, 2011, 34(1): 292-302. |
15 | Wang K, Tu X C, Bae C H, et al. Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2015, 80: 865-872. |
16 | Raul A, Bhasme B N, Maurya R S. A numerical investigation of fluid flow maldistribution in inlet header configuration of plate fin heat exchanger[J]. Energy Procedia, 2016, 90: 267-275. |
17 | 刘巍, 朱春玲. 分流板结构对微通道平行流蒸发器性能的影响[J]. 化工学报, 2012, 63(3): 761-766. |
Liu W, Zhu C L. Effects of deflector structure on performance of micro-channel evaporator with parallel flow[J]. CIESC Journal, 2012, 63(3): 761-766. | |
18 | 刘巍, 朱春玲. 分流板开孔面积对微通道平行流蒸发器性能的影响[J]. 制冷学报, 2014, 35(3): 58-64. |
Liu W, Zhu C L. Effects of open area of holes in deflector on performance of micro-channel evaporator with parallel flow[J]. Journal of Refrigeration, 2014, 35(3): 58-64. | |
19 | 王芳芳. 干式管壳式蒸发器制冷剂分配结构优化与性能研究[D]. 郑州: 郑州大学, 2018. |
Wang F F. Research on optimization of refrigerant distribution structure and performance in dry type shell-tube evaporator[D]. Zhengzhou: Zhengzhou University, 2018. | |
20 | 王珂, 廖家干, 王永庆, 等. 蒸发器入口结构流量分配特性及优化研究[J]. 流体机械, 2020, 48(11): 62-66, 88. |
Wang K, Liao J G, Wang Y Q, et al. Flow distribution characteristics and optimization of evaporator inlet structure[J]. Fluid Machinery, 2020, 48(11): 62-66, 88. | |
21 | 袁培, 常宏旭, 李丹, 等. 微通道平行流换热器流量分配均匀性研究[J]. 低温与超导, 2019, 47(3): 44-48. |
Yuan P, Chang H X, Li D, et al. The flow distribution uniformity research on the microchannel parallel flow heat exchanger[J]. Cryogenics & Superconductivity, 2019, 47(3): 44-48. | |
22 | 高志成, 孟浩, 王燕令, 等. 平行流换热器内变孔径分流板分流特性研究[J]. 低温与超导, 2018, 46(5): 63-68, 87. |
Gao Z C, Meng H, Wang Y L, et al. Study on distribution characteristics of aperture-changeable deflector in parallel flow heat exchanger[J]. Cryogenics & Superconductivity, 2018, 46(5): 63-68, 87. | |
23 | Wu X H, Gao Z C, Meng H, et al. Experimental study on the uniform distribution of gas-liquid two-phase flow in a variable-aperture deflector in a parallel flow heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119353. |
24 | Wu G M, Yan Z T, Zhuang D W, et al. Design method and application effects of embedded-clapboard distributor on refrigerant distribution among multi-tubes of micro-channel heat exchangers[J]. International Journal of Refrigeration, 2020, 119: 420-433. |
25 | Shao H S, Zhang M, Zhao Q X, et al. Study of improvements on flow maldistribution of double tube-passes shell-and-tube heat exchanger with rectangular header[J]. Applied Thermal Engineering, 2018, 144: 106-116. |
26 | 赵兰萍, 王仁杰, 刘桂兰, 等. 平行流蒸发器制冷剂流量分配特性[J]. 同济大学学报(自然科学版), 2019, 47(2): 261-268, 274. |
Zhao L P, Wang R J, Liu G L, et al. Characteristics of refrigerant flow distribution in parallel flow evaporator[J]. Journal of Tongji University (Natural Science), 2019, 47(2): 261-268, 274. | |
27 | Chin W M, Raghavan V R. On the adverse influence of higher statistical moments of flow maldistribution on the performance of a heat exchanger[J]. International Journal of Thermal Sciences, 2011, 50(4): 581-591. |
28 | Ngoma G D, Godard F. Flow distribution in an eight level channel system[J]. Applied Thermal Engineering, 2005, 25(5/6): 831-849. |
29 | Ahmad M, Berthoud G, Mercier P. General characteristics of two-phase flow distribution in a compact heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 442-450. |
30 | Habib M A, Ben-Mansour R, Said S A M, et al. Evaluation of flow maldistribution in air-cooled heat exchangers[J]. Computers & Fluids, 2009, 38(3): 677-690. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||