1 |
Sarósdy L R, Acosta A J. Note on observations of cavitation in different fluids[J]. Journal of Basic Engineering, 1961, 83(3): 399-400.
|
2 |
Moore R, Ruggeri R. Venturi scaling studies on thermodynamic effects of developed cavitation of Freon-114[R/OL]. National Aeronautics and Space Administration, 1968, .
|
3 |
郑直, 赵鹏坤, 闵为, 等. 液压阀口空气型空化周期特性的实验研究[J]. 西安交通大学学报, 2019, 53(10): 72-78, 150.
|
|
Zheng Z, Zhao P K, Min W, et al. An experimental investigation on periodic characteristics of gaseous cavitating flow in hydraulic valve orifices[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 72-78, 150.
|
4 |
黄继汤. 空化与空蚀的原理及应用[M]. 北京: 清华大学出版社, 1991.
|
|
Huang J T. Principle and Application of Cavitation and Cavitation[M]. Beijing: Tsinghua University Press, 1991.
|
5 |
Dular M, Petkovšek M. Cavitation erosion in liquid nitrogen[J]. Wear, 2018, 400/401: 111-118.
|
6 |
曹玉良, 明廷锋, 贺国, 等. 基于深度学习的离心泵空化状态识别[J]. 西安交通大学学报, 2017, 51(11): 165-172.
|
|
Cao Y L, Ming T F, He G, et al. Cavitation state recognition of centrifugal pump based on deep learning[J]. Journal of Xi'an Jiaotong University, 2017, 51(11): 165-172.
|
7 |
Brunhart M. Cavitation erosion risk indicators for a thin gap within a diesel fuel pump[J]. Wear, 2020, 442/443: 203024.
|
8 |
Taylor C M, Dowson D. Turbulent lubrication theory—application to design[J]. Journal of Lubrication Technology, 1974, 96(1): 1.
|
9 |
Braun M J, Hannon W M. Cavitation formation and modelling for fluid film bearings: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(9): 839-863.
|
10 |
Lai T, Yan S, Wang Y, et al. Experimental study on vaporous cavitation of R134a in micron clearance[J]. Experimental Thermal and Fluid Science, 2021, 129: 110484.
|
11 |
Hord J, Voth R. Tabulated values of cavitation B-factor for helium, H2, N2, F2, O2, refrigerant 114, and H2O[R/OL]. National Aeronautics and Space Administration, 2017, .
|
12 |
Sun C, Can E, Dijkink R, et al. Growth and collapse of a vapour bubble in a microtube: the role of thermal effects[J]. Journal of Fluid Mechanics, 2009, 632: 5-16.
|
13 |
Chahine G L. Experimental and asymptotic study of nonspherical bubble collapse[M]//Mechanics and Physics of Bubbles in Liquids. Dordrecht: Springer Netherlands, 1982: 187-197.
|
14 |
Kucherenko V V, Shamko V V. Dynamics of electric-explosion cavities between two solid parallel walls[J]. Journal of Applied Mechanics and Technical Physics, 1986, 27(1): 112-115.
|
15 |
Gonzalez-Avila S R, Klaseboer E, Khoo B C, et al. Cavitation bubble dynamics in a liquid gap of variable height[J]. Journal of Fluid Mechanics, 2011, 682: 241-260.
|
16 |
Quinto-Su P A, Lim K Y, Ohl C D. Cavitation bubble dynamics in microfluidic gaps of variable height[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(4): 047301.
|
17 |
Lin X, Jiang S, Zhang C, et al. Thermohydrodynamic analysis of high speed water-lubricated spiral groove thrust bearing considering effects of cavitation, inertia and turbulence[J]. Tribology International, 2018, 119: 645-658.
|
18 |
Zhang S, Jiang S, Lin X. Static and dynamic characteristics of high-speed water-lubricated spiral-groove thrust bearing considering cavitating and centrifugal effects[J]. Tribology International, 2020, 145: 106159.
|
19 |
Lin X, Wang R, Zhang S, et al. Study of cavitation bubbles evolution for high-speed water-lubricated spiral groove thrust bearings[J]. Journal of Tribology, 2019, 141(5): 051703.
|
20 |
Zhang S W, Wang S, Jiang S Y, et al. Thermohydrodynamic model of cavitating flow and dynamic characteristic calculation for high-speed water-lubricated pump-out spiral groove bearing[J]. Tribology Transactions, 2020, 63: 736-755.
|
21 |
Sun D C, Brewe D E, Abel P B. Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing[J]. Journal of Tribology, 1993, 115(1): 88-95.
|
22 |
Kwak H Y, Kang K M. Gaseous bubble nucleation under shear flow[J]. International Journal of Heat and Mass Transfer, 2009, 52(21): 4929-4937.
|
23 |
Canedo E L, Favelukis M, Tadmor Z, et al. An experimental study of bubble deformation in viscous liquids in simple shear flow[J]. AIChE Journal, 1993, 39(4): 553-559.
|
24 |
Rust A C, Manga M. Bubble shapes and orientations in low Re simple shear flow[J]. Journal of Colloid and Interface Science, 2002, 249(2): 476-480.
|
25 |
Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295.
|
26 |
Azad M, Syeda S R. A numerical model for bubble size distribution in turbulent gas-liquid dispersion[J]. Journal of Chemical Engineering, 2010, 24(1): 25.
|
27 |
Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2015, 32(1): 71-82.
|
28 |
Abdelmessih A H. Spherical bubble growth in a highly superheated liquid pool[J]. Cocurrent Gas-Liquid Flow, 1968: 485-495.
|
29 |
Jones O C J, Zuber N. Bubble growth in variable pressure fields[J]. Journal of Heat Transfer, 1978, 100(3): 453-459.
|
30 |
潘丰, 王超杰, 母立众, 等. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527.
|
|
Pan F, Wang C J, Mu L Z, et al. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527.
|