化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1663-1673.DOI: 10.11949/j.issn.0438-1157.20180940
收稿日期:
2018-08-20
修回日期:
2019-02-14
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
张香兰
作者简介:
<named-content content-type="corresp-name">尚志新</named-content>(1987—),男,博士,<email>messi2008@126.com</email>|张香兰(1968—),女,博士,教授,<email>zhxl@cumtb.edu.cn</email>
基金资助:
Zhixin SHANG(),Xianglan ZHANG()
Received:
2018-08-20
Revised:
2019-02-14
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xianglan ZHANG
摘要:
为探索γ-巯丙基三乙氧基硅烷(MPTS)水解程度对纳米二氧化硅接枝机理的影响,采用基于密度泛函理论(DFT)的量子化学方法,选择合适的泛函和合理的模型,系统研究了MPTS及其不同水解程度产物的反应活性及与纳米二氧化硅的接枝机理,为纳米二氧化硅改性工艺优化及改性效果的提升提供重要理论基础。结果表明:经数据对比确定GGA-PBE泛函优化后的纳米二氧化硅团簇模型为最合理模型。二氧化硅表面硅羟基中的氧原子为亲核活性中心,氢原子为亲电活性中心,MPTS及其水解产物中氧原子为亲核活性中心,硅原子为亲电活性中心。水解引起LUMO轨道向硅原子偏移,硅原子亲电指数提高,而HOMO轨道向氧原子偏移,氧原子的亲核指数提高,引起MPTS水解产物更容易受到二氧化硅表面硅羟基攻击,进而提高了接枝反应活性。MPTS的水解降低了接枝反应的活化能,不同水解程度产物接枝反应活化能(E a)顺序为M0>M3>M1>M2(M0、M1、M2和M3分别表示MPTS及其一级、二级和三级水解产物),接枝反应属于SN2亲核取代,且为放热反应。M0、M1和M2都是通过脱醇机理发生接枝反应,空间位阻效应和偶联剂中心硅原子的亲电性能为反应主要控制因素,而M3是通过脱水机理发生接枝反应。
中图分类号:
尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
Zhixin SHANG, Xianglan ZHANG. DFT study on effects of hydrolysis degrees of 3-mercaptopropyltriethoxysilane on grafting mechanisms of nano-silica[J]. CIESC Journal, 2019, 70(5): 1663-1673.
图2 纳米二氧化硅团簇模型 (白色、黄色、红色的球分别代表氢、硅和氧原子,紫色大球代表OSiH3)
Fig.2 Cluster model of nano-silica (white, yellow, red ball are for H, Si, O atoms, and big purple ball are for OSiH3)
Model | Bond length of O—H /? | Bond length of Si—O /? | Bond angle of Si—O—H /(°) |
---|---|---|---|
GGA-PBE | 0.970—0.981 | 1.624—1.653 | 115.8—116.6 |
GGA-PW91 | 0.969—0.986 | 1.620—1.656 | 114.7—114.9 |
B3LYP | 0.963—0.973 | 1.615—1.645 | 114.9—115.1 |
cluster[ | 0.962 | 1.645 | 114.7 |
slab[ | 0.968—0.980 | 1.629—1.637 | — |
表1 不同泛函优化后纳米二氧化硅模型硅羟基参数
Table 1 Parameters of silanols in cluster models optimized by different functions
Model | Bond length of O—H /? | Bond length of Si—O /? | Bond angle of Si—O—H /(°) |
---|---|---|---|
GGA-PBE | 0.970—0.981 | 1.624—1.653 | 115.8—116.6 |
GGA-PW91 | 0.969—0.986 | 1.620—1.656 | 114.7—114.9 |
B3LYP | 0.963—0.973 | 1.615—1.645 | 114.9—115.1 |
cluster[ | 0.962 | 1.645 | 114.7 |
slab[ | 0.968—0.980 | 1.629—1.637 | — |
Model | Types of silanol | Vibrational frequency/cm?1 |
---|---|---|
PBE | vicinal(O1—H1) | 3785 |
vicinal H-bonded(O2—H2) | 3562 | |
PW91 | vicinal(O1—H1) | 3799 |
vicinal H-bonded(O2—H2) | 3443 | |
B3LYP | vicinal(O1—H1) | 3884 |
vicinal H-bonded(O2—H2) | 3677 | |
cluster [ | vicinal | 3763 |
vicinal H-bonded | 3516 | |
experiment[ | vicinal | — |
vicinal H-bonded | 3530 |
表2 不同泛函优化后纳米二氧化硅模型硅羟基振动频率
Table 2 Vibrational frequencies of silanols in cluster models optimized by different functions
Model | Types of silanol | Vibrational frequency/cm?1 |
---|---|---|
PBE | vicinal(O1—H1) | 3785 |
vicinal H-bonded(O2—H2) | 3562 | |
PW91 | vicinal(O1—H1) | 3799 |
vicinal H-bonded(O2—H2) | 3443 | |
B3LYP | vicinal(O1—H1) | 3884 |
vicinal H-bonded(O2—H2) | 3677 | |
cluster [ | vicinal | 3763 |
vicinal H-bonded | 3516 | |
experiment[ | vicinal | — |
vicinal H-bonded | 3530 |
Model | Types of silanol | δ(29Si) | δ(1H) |
---|---|---|---|
GGA-PBE | vicinal(O1—H1) | 92.1 | 1.7 |
vicinal H-bonded(O2—H2) | 92.3 | 4.7 | |
GGA-PW91 | vicinal(O1—H1) | 95.2 | 1.8 |
vicinal H-bonded(O2—H2) | 92.4 | 6 | |
cluster[ | vicinal | 86.0 | — |
vicinal H-bonded | 86.0 | 3-5 | |
experiment[ | vicinal | 99 | 2 |
vicinal H-bonded | 99 | — |
表3 不同泛函优化后纳米二氧化硅模型硅羟基NMR数据
Table 3 NMR of silanols in cluster models optimized by different functions
Model | Types of silanol | δ(29Si) | δ(1H) |
---|---|---|---|
GGA-PBE | vicinal(O1—H1) | 92.1 | 1.7 |
vicinal H-bonded(O2—H2) | 92.3 | 4.7 | |
GGA-PW91 | vicinal(O1—H1) | 95.2 | 1.8 |
vicinal H-bonded(O2—H2) | 92.4 | 6 | |
cluster[ | vicinal | 86.0 | — |
vicinal H-bonded | 86.0 | 3-5 | |
experiment[ | vicinal | 99 | 2 |
vicinal H-bonded | 99 | — |
Methods | Silane | E a/ (kJ·mol?1) | E R/ (kJ·mol?1) | Imaginary frequency/cm?1 |
---|---|---|---|---|
GGA-PBE | MPTS | 99.6 | ?15.3 | ?592.8 |
GGA-PW91 | MPTS | 103.6 | ?27.0 | ?604.5 |
B3LYP | MPTS | 125.1 | ?28.1 | ?920.9 |
BLYP[ | TEOS | 154 | — | — |
QM/MM[ | TEOS | 134.4 | — | — |
experiment[ | TESPT | 90.4 | — | — |
表4 不同泛函下M0接枝反应数据表
Table 4 Results of grafting reaction of M0 by different functions
Methods | Silane | E a/ (kJ·mol?1) | E R/ (kJ·mol?1) | Imaginary frequency/cm?1 |
---|---|---|---|---|
GGA-PBE | MPTS | 99.6 | ?15.3 | ?592.8 |
GGA-PW91 | MPTS | 103.6 | ?27.0 | ?604.5 |
B3LYP | MPTS | 125.1 | ?28.1 | ?920.9 |
BLYP[ | TEOS | 154 | — | — |
QM/MM[ | TEOS | 134.4 | — | — |
experiment[ | TESPT | 90.4 | — | — |
1 | Basilissi L , Silvestro G D , Farina H , et al . Synthesis and characterization of PLA nanocomposites containing nanosilica modified with different organosilanes (Ⅱ): Effect of the organosilanes on the properties of nanocomposites: thermal characterization[J]. J. Appl. Polym. Sci., 2013, 128(5): 3057-3063. |
2 | Liu D Y , Niu L L , Dai Y M , et al . Synthesis of poly(amidoamine) dendrimer-based dithiocarbamate magnetic composite for the adsorption of Co2+ from aqueous solution[J].J. Mater. Sci-Mater. El., 2018, 128(5): 3390-3397. |
3 | Dai Y M , Zou J Q , Liu D Y , et al . Preparation of Congo red functionalized Fe3O4@SiO2 nanoparticle and its application for the removal of methylene blue[J]. Colloid. Surface. A, 2018, 550: 90-98. |
4 | Dai Y M , Niu L L , Zou J Q , et al . Preparation of core-shell magnetic Fe3O4@SiO2 dithiocarbamate nanoparticle and its application for the Ni2+, Cu2+ removal[J]. Chinese Chemical Letters, 2018, 29(6): 887-891. |
5 | 范艳玲, 刘艺芳, 吕雪莉, 等 . 硅酸乙酯为原料反相微乳液法制备纳米二氧化硅[J]. 化学工业与工程, 2010, 27(5): 387-390. |
Fan Y L , Liu Y F , Lyu X L , et al . Preparation of silica nanoparticles from ethyl silicate in reverse microemulsions[J]. Chemical Industry and Engineering, 2010, 27(5): 387-390. | |
6 | Zhang C F , Tang Z H , Guo B C , et al . Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica[J]. Compos. Sci. Technol., 2018, 156: 70-77. |
7 | Zheng J C , Han D L , Ye X , et al . Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites[J]. Polymer, 2018, 135: 200-210. |
8 | Sae-oui P , Sirisinha C , Thepsuwan U , et al . Comparison of reinforcing efficiency between Si-69 and Si-264 in a conventional vulcanization system[J]. Polymer Testing, 2004, 24(4): 439-446. |
9 | Yrieix M , Cruz-boisson F D , Majeste J C . Rubber/silane reactions and grafting rates investigated by liquidstate NMR spectroscopy[J]. Polymer, 2016, 87: 90-97. |
10 | Gunji N , Komori Y , Yoshitake H . Double functionalization with mercaptopropyl and vinyl groups of the surface of silica nanoparticles and its application to tire rubber[J]. Colloid. Surface. A, 2016, 511: 351-356. |
11 | Thaptong P , Sea-oui P , Sirisinha C . Effects of silanization temperature and silica type on properties of silica filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds[J]. J. Appl. Polym. Sci., 2016, 133(17): 43342. |
12 | Yao H , Weng G S , Liu Y P , et al . Effect of silane coupling agent on the fatigue crack propagation of silica filled natural rubber[J]. J. Appl. Polym. Sci., 2015, 132(20): 1-4. |
13 | Li Y , Han B Y , Liu L , et al . Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica[J]. Compos. Sci. Technol., 2013, 88(10): 69-75. |
14 | Choi S S . Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene–butadiene rubber compounds[J]. Polymer Testing, 2002, 21(2): 201-208. |
15 | Blitz J P , Murthy R S S , Letden D E . The role of amine structure on catalytic activity for silylation reactions with Cab-O-Sil[J]. Colloid. Interf. Sci., 1988, 126(2): 387-392. |
16 | White L D , Tripp C P . Reaction of (3-aminopropyl)-dimethylethoxysilane with amine catalysts on silica surfaces[J]. Colloid. Interf. Sci., 2000, 232(2): 400-407. |
17 | Gauthier J P , Aime T , Bouhacina A J , et al . Study of grafted silane molecules on silica surface with an atomic force microscope[J]. Langmuir, 1996, 12(21): 5126-5137. |
18 | Howarter J A , Youngblood J P . Optimization of silica silanization by 3-aminopropyltriethoxysilane[J]. Langmuir, 2006, 22(26): 11142-11147. |
19 | Kallury K M R , Macdonald P M , Thompson M . Effect of surface water and base catalysis on the silanization of silica by alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization magic angle spinning nuclear magnetic resonance[J]. Langmuir, 1994, 10(2): 492-499. |
20 | And A V K , Smirnov S N . Effect of water on silanization of slica by trimethoxysilanes[J]. Langmuir, 2015, 18(8): 3181-3184. |
21 | Pena-Alonso R , Rubio F , Rubio J , et al . Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy[J]. J. Mater. Sci., 2007, 42(2): 595-603. |
22 | Salon M C B , Belgacem M N . Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group[J]. Colloid. Surface. A, 2010, 366(1): 147-154. |
23 | Salon M C B , Bayle P A , Abedlmouleh M , et al . Kinetics of hydrolysis and self-condensation reactions of silanes by NMR spectroscopy[J]. Colloid. Surface. A, 2008, 312(2): 83-91. |
24 | Vilmin F , Bottero I , Travert A , et al . Reactivity of bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT) silane coupling agent over hydrated silica: operando IR spectroscopy and chemometrics study[J]. J. Phys. Chem. C, 2014, 118(8): 4056-4071. |
25 | Iarlori S , Ceresol D , Bernasconi M , et al . Dehydroxylation and silanization of the surfaces of β-cristobalite silica: an ab initio simulation[J]. J. Phys. Chem. B, 2001, 105(33): 8007-8013. |
26 | Zipoli F , Donadio D , Bernasconi M . Simulation of the grafting of organosilanes at the surface of dry amorphous silica[J]. J. Phys. Condens. Mat., 2008, 20(22): 224011. |
27 | Deetz J D , Ngo Q , Faller R . Reactive molecular dynamics simulations of the silanization of silica substrates by methoxysilanes and hydroxysilanes[J]. Langmuir, 2016, 32(28): 7045-7055. |
28 | Potapov V V , Zhuravlev L T . Concentration of various forms of water in silica precipitated from a hydrothermal solution[J]. J. Volcanol. Seismol., 2007, 1(5): 310-318. |
29 | Zhuravlev L T . The surface chemistry of amorphous silica[J]. Colloids Surfaces A, 2000, 173(1/2/3): 1-38. |
30 | Bandura A V , Kubicki J D , Sofo J O . Periodic density functional theory study of water adsorption on the α-quartz (101) surface[J]. J. Phys. Chem. C, 2011, 115(13): 6756-6766. |
31 | Yang J , Wang E G . Water adsorption on hydroxylated α-quartz (0001) surfaces: from monomer to flat bilayer[J]. Phys. Rev. B, 2006, 73(3): 35406. |
32 | Taylor D C E , Runge K , Cory M G , et al . Binding of small molecules to a silica surface: comparing experimental and theoretical results[J]. J. Phys. Chem. C, 2015, 115(50): 24734-24742. |
33 | Yang L X , Feng J , Zhang W G , et al . Film forming kinetics and reaction mechanism of γ-glycidoxypropyltrimethoxysilane on low carbon steel surfaces[J]. Appl. Surf. Sci., 2010, 256(22): 6787-6794. |
34 | Del R I , Gerber I C , Poteau R , et al . Grafting of lanthanide complexes on silica surfaces: a theoretical investigation[J]. J. Phys. Chem. A, 2010, 114(21): 22-30. |
35 | Bermudez V M . Computational study of the adsorption of trichlorophosphate, dimethyl methylpho-sphonate, and sarin on amorphous SiO2 [J]. J. Phys. Chem.C, 2007, 111(26): 9314-9323. |
36 | Chashchikhin V , Rykova E , Bagaturyants A . Density functional theory modeling of the adsorption of small analyte and indicator dye 9-(diphenylamino)acridine molecules on the surface of amorphous silica nanoparticles[J]. Phys. Chem. Chem. Phys., 2011, 13(4): 1440-1447. |
37 | Rosal I D , Gerber I C , Poteau R , et al . Grafting of lanthanide complexes on silica surfaces dehydroxylated at 200 degrees: a theoretical investigation[J]. New J. Chem., 2015, 39(10): 7703-7715. |
38 | Musso F , Sodupe M , Corno M , et al . H-bond features of fully hydroxylated surfaces of crystalline silica polymorphs: a periodic B3LYP study[J]. J. Phys. Chem. C, 2009, 113(41): 17876-17884. |
39 | Yang L X , Feng J , Zhang W G , et al . Experimental and computational study on hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane (γ-GPS)[J]. Appl. Surf. Sci., 2010, 257(3): 990-996. |
40 | Cheng X L , Zhao Y Y , Liu Y J . Role of F− in the hydrolysis–condensation mechanisms of silicon alkoxide Si(OCH3)4: a DFT investigation[J]. New J. Chem., 2013, 37(5): 1371-1377. |
41 | 于莉, 程学礼, 赵燕云 . 酸性条件下硅醇盐Si(OCH3)4水解与聚合机理的密度泛函研究[J]. 高分子学报, 2013, 71(1): 118-125. |
Yu L , Cheng X L , Zhao Y Y . Hydrolysis and oligomerization mechanisms of Si(OCH3)4 in acid solutions: a DFT investigation[J]. Acta. Polyme. Sin., 2013, 71(1): 118-125. | |
42 | Liu J W , Li C , Sun C , et al . Insights into the silanization processes of silica with and without acid-base additives via TG-FTIR and kinetic simulation[J]. Ind. Eng. Chem. Res., 2017, 56(18): 5164-5173. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[6] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[7] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[8] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[9] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[10] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[11] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
[12] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[13] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[14] | 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834. |
[15] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||