化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4032-4042.DOI: 10.11949/0438-1157.20190725
收稿日期:
2019-06-26
修回日期:
2019-07-31
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
李国兵
作者简介:
江南(1994—),男,硕士研究生,Nan JIANG(),Bing LIU,Zhongli TANG,Donghui ZHANG,Guobing LI()
Received:
2019-06-26
Revised:
2019-07-31
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guobing LI
摘要:
为减缓气候变化,减少CO2的排放,对真空变温吸附(TVSA)从干烟道气中捕集CO2进行了系统的研究。以沸石13X为吸附剂,设计了实验室规模的4塔连续进料的TVSA工艺,并建立数学模型进行数值模拟。模拟结果表明,通过四塔TVSA可获得纯度为97.54%,回收率为96.79%的CO2产品气,其产率为1.7 mol·
中图分类号:
江南, 刘冰, 唐忠利, 张东辉, 李国兵. 真空变温吸附捕集干烟道气中CO2的模拟研究[J]. 化工学报, 2019, 70(10): 4032-4042.
Nan JIANG, Bing LIU, Zhongli TANG, Donghui ZHANG, Guobing LI. Simulation study on CO2 capture from dry flue gas by temperature vacuum swing adsorption[J]. CIESC Journal, 2019, 70(10): 4032-4042.
Bed | Time/s | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 200 | 600 | 200 | 200 | 600 | 200 | 200 | 600 | 200 | 200 | 600 | |
1 | AD | RE | H | VU | C | C&PR | ||||||
2 | C&PR | AD | RE | H | VU | C | ||||||
3 | H | VU | C | C&PR | AD | RE | H | |||||
4 | RE | H | VU | C | C&PR | AD |
表1 TVSA工艺时序
Table 1 Cycle sequence of TVSA process
Bed | Time/s | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 200 | 600 | 200 | 200 | 600 | 200 | 200 | 600 | 200 | 200 | 600 | |
1 | AD | RE | H | VU | C | C&PR | ||||||
2 | C&PR | AD | RE | H | VU | C | ||||||
3 | H | VU | C | C&PR | AD | RE | H | |||||
4 | RE | H | VU | C | C&PR | AD |
模型方程 | |
---|---|
质量平衡 | |
热量平衡 | 气相: |
固相: | |
塔壁: | |
冷/热流体相: | |
动量平衡 | |
线性推动力 | |
吸附平衡 | |
纯度 | |
回收率 | |
产率 | |
能耗 | |
表2 吸附床的模型方程
Table 2 Model equations of adsorption bed
模型方程 | |
---|---|
质量平衡 | |
热量平衡 | 气相: |
固相: | |
塔壁: | |
冷/热流体相: | |
动量平衡 | |
线性推动力 | |
吸附平衡 | |
纯度 | |
回收率 | |
产率 | |
能耗 | |
参数 | 数值 |
---|---|
H b/m | 1 |
D b/m | 0.1 |
W t/m | 0.005 |
ε b | 0.38 |
ε p | 0.384 |
ψ | 0.91 |
ρ b/(kg?m-3) | 756 |
ρ w/(kg?m-3) | 7800 |
r p/m | 9×10-4 |
Cp s/(kJ?kg-1?K-1) | 0.504 |
Cp w/(kJ?kg-1?K-1) | 0.52 |
h w/(W?m-2?K-1) | 220 |
| 0.1 |
| 0.5 |
表3 吸附床和吸附剂的物性参数
Table 3 Physical characteristics of adsorption bed and sorbent
参数 | 数值 |
---|---|
H b/m | 1 |
D b/m | 0.1 |
W t/m | 0.005 |
ε b | 0.38 |
ε p | 0.384 |
ψ | 0.91 |
ρ b/(kg?m-3) | 756 |
ρ w/(kg?m-3) | 7800 |
r p/m | 9×10-4 |
Cp s/(kJ?kg-1?K-1) | 0.504 |
Cp w/(kJ?kg-1?K-1) | 0.52 |
h w/(W?m-2?K-1) | 220 |
| 0.1 |
| 0.5 |
参数 | 数值 |
---|---|
T f/K | 298.15 |
P a/Pa | 1.5×105 |
T heat/K | 413.15 |
T cool/K | 298.15 |
表4 工艺操作参数
Table 4 Process operating parameters
参数 | 数值 |
---|---|
T f/K | 298.15 |
P a/Pa | 1.5×105 |
T heat/K | 413.15 |
T cool/K | 298.15 |
Item | IP1/(kmol·kg-1·bar-1) | IP2/K | IP3/bar-1 | IP4/K | ΔH/ (kJ·mol-1) |
---|---|---|---|---|---|
CO2 | 2.88×10-7 | 3574 | 6.18×10-5 | 3603 | -37 |
N2 | 7.18×10-7 | 1670 | 6.21×10-4 | 1359 | -18.5 |
表5 拓展的Langmuir吸附等温线参数
Table 5 Adsorptin isotherm parameters fitted by extended Langmuir model
Item | IP1/(kmol·kg-1·bar-1) | IP2/K | IP3/bar-1 | IP4/K | ΔH/ (kJ·mol-1) |
---|---|---|---|---|---|
CO2 | 2.88×10-7 | 3574 | 6.18×10-5 | 3603 | -37 |
N2 | 7.18×10-7 | 1670 | 6.21×10-4 | 1359 | -18.5 |
1 | Ben-Mansour R , Habib M A , Bamidele O E , et al . Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review[J]. Applied Energy, 2016, 161: 225-255. |
2 | Wang L , Yang Y , Shen W , et al . CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7947-7955. |
3 | 刘冰, 孙伟娜, 安亚雄, 等 . 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
Liu B , Sun W N , An Y X , et al . Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture [J]. CIESC Journal, 2018, 69(11): 4788-4797. | |
4 | Duarte G S , Schürer B , Voss C , et al . Adsorptive separation of CO2 from flue gas by temperature swing adsorption processes[J]. ChemBioEng Reviews, 2017, 4(5): 277-288. |
5 | Leperi K T , Snurr R Q , You F . Optimization of two-stage pressure/vacuum swing adsorption with variable dehydration level for postcombustion carbon capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3338-3350. |
6 | Ho H , Iizuka A , Shibata E . Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 8941-8954. |
7 | 阎海宇, 付强, 周言, 等 . 真空变压吸附捕集烟道气中二氧化碳的模拟、实验及分析[J]. 化工学报, 2016, 67(6): 2371-2379. |
Yan H Y , Fu Q , Zhou Y , et al . Simulation, experimentation and analyzation of vacuum pressure swing adsorption process for CO2 capture from dry flue gas [J]. CIESC Journal, 2016, 67(6): 2371-2379. | |
8 | Shi W , Yang H , Shen Y , et al . Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
9 | Shen Y , Shi W , Zhang D , et al . The removal and capture of CO2 from biogas by vacuum pressure swing process using silica gel[J]. Journal of CO2 Utilization, 2018, 27: 259-271. |
10 | Yan H , Fu Q , Zhou Y , et al . CO2 capture from dry flue gas by pressure vacuum swing adsorption: a systematic simulation and optimization[J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10. |
11 | Li D , Zhou Y , Shen Y , et al . Experiment and simulation for separating CO2 /N2 by dual-reflux pressure swing adsorption process[J]. Chemical Engineering Journal, 2016, 297: 315-324. |
12 | Tian C , Fu Q , Ding Z , et al . Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2 [J]. Separation and Purification Technology, 2017, 189: 54-65. |
13 | Nastaj J , Ambrożek B . Modeling of drying of gaseous mixtures in TSA system with fixed bed of solid desiccants[J]. Drying Technology, 2012, 30(10): 1062-1071. |
14 | Ahn H , Lee C . Adsorption dynamics of water in layered bed for air-drying TSA process[J]. AIChE Journal, 2003, 49(6): 1601-1609. |
15 | Ambrożek B , Zwarycz-Makles K . Theoretical and experimental studies of the recovery of volatile organic compounds from waste air streams in the thermal swing adsorption system with closed-loop regeneration of adsorbent[J]. Energy Conversion and Management, 2014, 85: 646-654. |
16 | He J , Deng S , Zhao L , et al . A numerical analysis on energy-efficiency performance of temperature swing adsorption for CO2 capture[J]. Energy Procedia, 2017, 142: 3200-3207. |
17 | Marx D , Joss L , Hefti M , et al . Temperature swing adsorption for postcombustion CO2 capture: single- and multicolumn experiments and simulations[J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1401-1412. |
18 | Clausse M , Merel J , Meunier F . Numerical parametric study on CO2 capture by indirect thermal swing adsorption[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1206-1213. |
19 | Su F , Lu C . CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J]. Energy & Environmental Science, 2012, 5(10): 9021. |
20 | Wang L , Liu Z , Li P , et al . Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process[J]. Chemical Engineering Journal, 2012, 197: 151-161. |
21 | Lian Y , Deng S , Li S , et al . Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): optimization of reactor geometry[J]. International Journal of Greenhouse Gas Control, 2019, 85: 187-198. |
22 | Ntiamoah A , Ling J , Xiao P , et al . CO2 capture by temperature swing adsorption: use of hot CO2-rich gas for regeneration[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 703-713. |
23 | Zhao R , Deng S , Zhao L , et al . Performance analysis of temperature swing adsorption for CO2 capture using thermodynamic properties of adsorbed phase[J]. Applied Thermal Engineering, 2017, 123: 205-215. |
24 | Tlili N , Grévillot G , Vallières C . Carbon dioxide capture and recovery by means of TSA and/or VSA[J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 519-527. |
25 | Yang H , Yin C , Jiang B , et al . Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134: 232-240. |
26 | Zhou Y , Fu Q , Shen Y , et al . Upgrade of low-concentration oxygen-bearing coal bed methane by a vacuum pressure swing adsorption process: performance study and safety analysis[J]. Energy & Fuels, 2016, 30(2): 1496-1509. |
27 | Zhou Y , Shen Y , Fu Q , et al . CO enrichment from low-concentration syngas by a layered-bed VPSA process[J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6741-6754. |
28 | Joss L , Gazzani M , Hefti M , et al . Temperature swing adsorption for the recovery of the heavy component: an equilibrium-based shortcut model[J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 3027-3038. |
29 | Nikolaidis G N , Kikkinides E S , Georgiadis M C . An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 974-988. |
30 | Shen C , Liu Z , Li P , et al . Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5011-5021. |
31 | Wang L , Liu Z , Li P , et al . CO2 capture from flue gas by two successive VPSA units using 13XAPG[J]. Adsorption, 2012, 18(5/6): 445-459. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[13] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[14] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[15] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||