化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3307-3319.DOI: 10.11949/0438-1157.20190281
收稿日期:
2019-03-25
修回日期:
2019-05-17
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
王维
作者简介:
杨菁(1995—),女,硕士研究生,基金资助:
Jing YANG1(),Wei WANG1(),Shuo ZHANG1,Chunfang SONG2,Yujia TANG1
Received:
2019-03-25
Revised:
2019-05-17
Online:
2019-09-05
Published:
2019-09-05
Contact:
Wei WANG
摘要:
为了研究吸波材料辅助微波加热对传统冷冻干燥过程的强化作用,建立了多孔介质温度、浓度和电磁场耦合的多相传递模型;以烧结的碳化硅(SiC)为吸波材料、以甘露醇水溶液为待干料液进行了微波冷冻干燥实验,并测定了甘露醇固体的介电特性。模拟和实验结果均表明,吸波材料对初始非饱和多孔物料微波冷冻干燥具有显著的强化作用。初始非饱和样品微波冷冻干燥时间比传统冷冻干燥缩短了18%,比常规饱和样品传统冷冻干燥缩短了30%。模拟结果与实验数据吻合良好。这表明提出的新型干燥方法确实能够实现过程传热传质的同时强化。通过考察样品内部温度、饱和度和电场强度的实时分布,分析了微波冷冻干燥过程的传热传质和电磁波传播与耗散机理。在微波冷冻干燥过程中,初始非饱和样品累计吸收的辐射能和微波能的总和与传统冷冻干燥相当。这说明,该干燥方法只是提高了能量效率,从而大幅缩短了冷冻干燥时间。
中图分类号:
杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
Jing YANG, Wei WANG, Shuo ZHANG, Chunfang SONG, Yujia TANG. Multiphysics conjugated model for freeze-drying of liquid solution assisted by wave-absorbing material[J]. CIESC Journal, 2019, 70(9): 3307-3319.
Parameter | Value | Ref |
---|---|---|
c b /(J/(kg·K)) | 1200 | default① |
c i /(J/(kg·K)) | 1930 | [ |
c s /(J/(kg·K)) | 1310 | [ |
c v /(J/(kg·K)) | 1886 | [ |
e b | 0.5 | default① |
e i | 0.97 | [ |
e s | 0.6 | [ |
ΔH /(J/kg) | 2.839×106 | [ |
K r/s-1 | 300(S 0=1.0)/30(S 0=0.28) | [ |
? | 0.8798(S 0=1.0)/0.9631(S 0=0.28) | Exp. |
ε r,b ' | -12.36+0.087T | [ |
ε r,i ' | 3.2 | [ |
ε r,s ' | 2.42894+0.00385T(℃) | Exp. |
ε r,v ' | 1 | [ |
ε r,b″ | 27.99 | [ |
ε r,i″ | 0.003 | [ |
ε r,s″ | 0.22+0.00038T(℃) | Exp. |
ε r,v″ | 0 | [ |
λ b /(W/(m·K)) | 450(300/T)0.75 | default① |
λ i /(W/(m·K)) | 2.22 | [ |
λ s /(W/(m·K)) | 2.64 | [ |
λ v /(W/(m·K)) | 0.022 | [ |
μ r | 1 | — |
μ v /(kg/(m·s)) | 0.011(T/273)1.5/(T+961) | [ |
ρ b /(kg/m3) | 3200 | default① |
ρ i /(kg/m3) | 913 | [ |
ρ s /(kg/m3) | 1489 | [ |
表1 模拟输入参数
Table 1 Input parameters used in simulation
Parameter | Value | Ref |
---|---|---|
c b /(J/(kg·K)) | 1200 | default① |
c i /(J/(kg·K)) | 1930 | [ |
c s /(J/(kg·K)) | 1310 | [ |
c v /(J/(kg·K)) | 1886 | [ |
e b | 0.5 | default① |
e i | 0.97 | [ |
e s | 0.6 | [ |
ΔH /(J/kg) | 2.839×106 | [ |
K r/s-1 | 300(S 0=1.0)/30(S 0=0.28) | [ |
? | 0.8798(S 0=1.0)/0.9631(S 0=0.28) | Exp. |
ε r,b ' | -12.36+0.087T | [ |
ε r,i ' | 3.2 | [ |
ε r,s ' | 2.42894+0.00385T(℃) | Exp. |
ε r,v ' | 1 | [ |
ε r,b″ | 27.99 | [ |
ε r,i″ | 0.003 | [ |
ε r,s″ | 0.22+0.00038T(℃) | Exp. |
ε r,v″ | 0 | [ |
λ b /(W/(m·K)) | 450(300/T)0.75 | default① |
λ i /(W/(m·K)) | 2.22 | [ |
λ s /(W/(m·K)) | 2.64 | [ |
λ v /(W/(m·K)) | 0.022 | [ |
μ r | 1 | — |
μ v /(kg/(m·s)) | 0.011(T/273)1.5/(T+961) | [ |
ρ b /(kg/m3) | 3200 | default① |
ρ i /(kg/m3) | 913 | [ |
ρ s /(kg/m3) | 1489 | [ |
1 | Liapis A I , Bruttini R . Freeze drying[M]//Mujumdar A S. Handbook of Industrial Drying. New York: Marcel Dekker, 2015: 259-282. |
2 | Nail S L , Jiang S , Chongprasert S , et al . Fundamentals of freeze-drying[M] //Nail S L , Akers M J . Development and Manufacture of Protein Pharmaceuticals. New York: Kluwer Academic & Plenum Publishers, 2002: 281-361. |
3 | Wang W , Chen G . Freeze drying with dielectric-material-assisted microwave heating[J]. AIChE Journal, 2007, 53(12): 3077-3088. |
4 | Wang W , Chen M , Chen G . Issues in freeze drying of aqueous solutions[J]. Chin. J. Chem. Eng., 2012, 20(3): 551-559. |
5 | Capozzi L C , Pisano R . Looking inside the ‘black box’: freezing engineering to ensure the quality of freeze-dried biopharmaceuticals[J]. Eur. J. Pharm. Biopharm., 2018, 129(8): 58-65. |
6 | Goshima H , Do G , Nakagawa K . Impact of ice morphology on design space of pharmaceutical freeze-drying[J]. J . Pharm. Sci., 2016, 105(6): 1920-1933. |
7 | Sitar A , Skrlec K , Voglar J , et al . Effects of controlled nucleation on freeze-drying lactose and mannitol aqueous solutions[J]. Drying Technol., 2018, 36(10): 1263-1272. |
8 | Bexiga N M , Bloise A C , Alencar A M , et al . Freeze-drying of ovalbumin-loaded carboxymethyl chitosan nanocapsules: impact of freezing and annealing procedures on physicochemical properties of the formulation during dried storage[J]. Drying Technol., 2018, 36(4): 400-417. |
9 | Pikal M J . Freeze drying[M]//Swarbrick J. Encyclopedia of Pharmaceutical Technology. 3nd ed. New York: Informa Healthcare, 2007: 1807-1833. |
10 | Wolff E , Gibert H , Rodolphe F . Vacuum freeze-drying kinetics and modelling of a liquid in a vial[J]. Chem. Eng. Process., 1989, 25(3): 153-158. |
11 | Hottot A , Vessot S , Andrieu J . A direct characterization method of the ice morphology. relationship between mean crystals size and primary drying times of freeze-drying processes[J]. Drying Technol., 2004, 22(8): 2009-2021. |
12 | Wang W , Chen G . Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect[J]. Chem. Eng. Sci., 2005, 60(23): 6542-6550. |
13 | 于凯, 王维, 潘艳秋, 等 . 初始非饱和多孔物料对冷冻干燥过程的影响[J]. 化工学报, 2013, 64 (9): 3110-3116. |
Yu K , Wang W , Pan Y Q , et al . Effect of initially unsaturated porous frozen material on freeze-drying[J]. CIESC Journal, 2013, 64 (9): 3110-3116. | |
14 | Wang W , Hu D B , Pan Y Q , et al . Freeze-drying of aqueous solution frozen with prebuilt pores[J]. AIChE Journal, 2015, 61(6): 2048-2057. |
15 | Ambros S , Mayer R , Schumann B , et al . Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability[J]. Innov. Food Sci. Emerg. Technol., 2018, 48(4): 90-98. |
16 | Ma Y H , Peltre P R . Freeze dehydration by microwave energy[J]. AIChE Journal, 1975, 21(2): 335-344. |
17 | Duan X , Zhang M , Mujumdar A S , et al . Microwave freeze drying of sea cucumber (Stichopus japonicus)[J]. J. Food Eng., 2010, 96(4): 491-497. |
18 | Wang R , Zhang M , Mujumdar A S . Effect of food ingredient on microwave freeze drying of instant vegetable soup[J]. LWT - Food Sci. Technol., 2010, 43(7): 1144-1150. |
19 | Wang W , Chen G . Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution[J]. Drying Technol., 2003, 21(6): 995-1017. |
20 | Wang W , Chen G . Freeze drying with dielectric-material-assisted microwave heating[J]. AIChE Journal, 2007, 53(12): 3077-3088. |
21 | 赵言冰 . 微波冷冻干燥过程传热传质的数值模拟[D]. 南京:东南大学, 2004. |
Zhao Y B . Numerical simulation of heat and mass transfer in microwave freeze-drying process[D]. Nanjing: Southeast University, 2004. | |
22 | 段续, 闫莎莎, 曾凡莲, 等 . 基于介电特性的白蘑菇微波冻干传热传质模拟[J]. 现代食品科技, 2016, 32(6): 177-182. |
Duan X , Yan S S , Zeng F L , et al . Simulation of heat and mass transfer during microwave freeze drying of white mushrooms based on dielectric property[J]. Modern Food Sci. Technol., 2016, 32(6): 177-182. | |
23 | Halder A , Dhall A , Datta A K . An improved, easily implementable, porous media based model for deep-fat frying(Part I): Model development and input parameters[J]. Food Bioprod. Process., 2007, 85(3): 209-219. |
24 | Warning A D , Arquiza J M R , Datta A K . A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying[J]. Food Bioprod. Process., 2015, 94(2): 637-648. |
25 | Halder A , Dhall A , Datta A K . Modeling transport in porous media with phase change: applications to food processing[J]. J.Heat Transf.-Trans.ASME, 2011, 133(3): 031010. |
26 | Meda V , Orsat V , Raghavan V . Microwave heating and the dielectric properties of foods[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 63-75. |
27 | Pu G Y , Song G L , Song C F , et al . Analysis of thermal effect using coupled hot-air and microwave heating at different position of potato[J]. Innov. Food Sci. Emerg. Technol., 2017, 41(3): 244-250. |
28 | Chen F , Warning A D , Datta A K , et al . Susceptors in microwave cavity heating: modeling and experimentation with a frozen pie[J]. J. Food Eng., 2017, 195(4): 191-205. |
29 | Bird R B , Stewart W E , Lightfoot E N . Transport Phenomena[M]. New York: John Willey & Sons, 2002: 488-508. |
30 | 张朔, 王维, 李强强, 等 . 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138. |
Zhang S , Wang W , Li Q Q , et al . Microwave freeze-drying of vitamin C solution frozen with preformed pores[J]. CIESC Journal, 2019, 70(6): 2129-2138. | |
31 | Dong S , Zhang X H , Zhang D Y , et al . Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics [J]. J.Eur.Ceram. Soc., 2018, 38(1): 29-39. |
32 | 赵延强, 王维, 潘艳秋, 等 . 具有初始孔隙的多孔物料冷冻干燥[J]. 化工学报, 2015, 66(2): 504-511. |
Zhao Y Q , Wang W , Pan Y Q , et al . Freeze-drying of porous frozen material with initial porosity[J]. CIESC Journal, 2015, 66(2): 504-511. | |
33 | Polaert I , Benamara N , Tao J , et al . Dielectric properties measurement methods for solids of high permittivities under microwave frequencies and between 20 and 250℃[J]. Chem. Eng. Process., 2017, 122(12): 339-345. |
34 | Song C F , Sang T , Li Z F , et al . Dielectric properties of blackberries as related to microwave drying control[J]. Int.J.Food Eng., 2017, 13(12): 1-8. |
35 | 牛利娇, 王维, 潘思麒, 等 . 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. |
Niu L J , Wang W , Pan S Q , et al . Multiphase transport model for freeze-drying of porous media with prefabricated porosity [J]. CIESC Journal, 2017, 68(5): 1833-1844. | |
36 | Nakagawa K , Hottot A , Vessot S , et al . Modeling of freezing steps during freeze-drying of drugs in vials[J]. AIChE Journal, 2007, 53(5): 1362-1372. |
37 | Chen M , Wang W , Pan Y Q , et al . 1D and 2D numerical verification on freeze drying of initially porous material frozen from aqueous solution[C]//Chen X D, Mujumdar A S. Proc.18th Intern. Drying Symp. Xiamen, China: XMU, 2012 |
38 | Geankoplis C J . Transport Processes and Unit Operations[M]. 3nd ed.NJ: Englewood Cliffs, 1993: 462-466. |
39 | Warning A , Dhall A , Mitrea D , et al . Porous media based model for deep-fat vacuum frying potato chips[J]. J. Food Eng., 2012, 110(3): 428-440. |
40 | Edmonton B . Brook Taylor[M] // Gowers T , Barrow-Green J , Leader I . The Princeton Companion to Mathematics. Princeton: Princeton University Press, 2008: 745-746. |
41 | Murphy D M , Koop T . Review of the vapour pressures of ice and super cooled water for atmospheric applications [J]. Q. J. R. Meteorol. Soc., 2005, 131(608): 1539-1565. |
42 | Eckert E R G , Drake R M . Thermophysical Properties, Analysis of Heat and Mass Transfer[M]. New York: McGraw-Hill, 1987: 767-783. |
43 | Liley P E . Physical and chemical data[M] // Perry H R , Green D W , Maloney J O . Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill, 1997: 40-304. |
44 | Tang J . Dielectric properties of foods[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 22-40. |
45 | Zhu H C , Gulati T , Datta A K , et al . Microwave drying of spheres: coupled electromagnetics-multiphase transport modeling with experimentation(Part Ⅰ): Model development and experimental methodology[J]. Food Bioprod. Process., 2015, 96(4): 314-325. |
46 | Basak T , Aparna K , Meenakshi A , et al . Effect of ceramic supports on microwave processing of porous food samples[J]. Int. J. Heat Mass Transf., 2006, 49(23/24): 4325-4339. |
47 | Wang W , Hu D P , Pan Y Q , et al . Numerical investigation on freeze-drying of aqueous material frozen with pre-built pores[J]. Chin.J. Chem.Eng., 2016, 24(1): 116-125. |
48 | Idelchik I E . General information and element of aerodynamics and hydraulic of pressure systems[M] //Steinberg M O , Malyavskaya G R , Martynenko O G . Handbook of Hydraulic Resistance. Florida: CRC Press, 1994: 9-12. |
49 | Lide D R . Handbook of Data on Organic Compounds[M]. Florida: CRC Press, 1994: 3338. |
50 | 李恒乐, 王维, 李强强, 等 . 具有预制孔隙多孔物料的冷冻干燥[J]. 化工学报, 2016, 67(7): 2857-2863. |
Li H L , Wang W , Li Q Q , et al . Freeze-drying of porous frozen material with prefabricated porosity [J]. CIESC Journal, 2016, 67(7): 2857-2863. | |
51 | 崔政伟, 陈丽君, 宋春芳, 等 . 热风微波耦合干燥技术和设备的研究进展[J]. 食品与生物技术学报, 2014, 33(11): 1121-1128. |
Cui Z W , Chen L J , Song C F , et al . Advances in coupled hot-air and microwave drying technique and equipment[J]. J . Food Sci. Biotech., 2014, 33(11): 1121-1128. | |
52 | Hossan M R , Byun D , Dutta P . Analysis of microwave heating for cylindrical shaped objects[J]. Int.J. Heat Mass Transf., 2010, 53(23/24): 5129-5138. |
53 | Knoerzer K , Regier M , Schubert H . A computational model for calculating temperature distributions in microwave food applications[J]. Innov. Food Sci. Emerg. Technol., 2008, 9(3): 374-384. |
54 | 陈又鲜 . 微波炉电磁场仿真设计匹配研究[D]. 成都: 电子科技大学, 2013. |
Chen Y X . Research about simulation design match of elecromagnetic field in microwave oven[D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
55 | 谢晓影, 乔秀臣 . 微波烧结的“热点”形成机制[J]. 微波学报, 2016, 32(5): 84-88. |
Xie X Y , Qiao X C . Mechanism of “hot spot” generation in microwave sintering process[J]. Journal of Microwaves, 2016, 32(5): 84-88. | |
56 | Regier M , Schubert H . Introducing microwave processing of food: principles and technologies[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 3-20. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||