化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3690-3703.DOI: 10.11949/0438-1157.20190591
收稿日期:
2019-05-29
修回日期:
2019-07-02
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
姚善泾
作者简介:
姚善泾(1957—),男,博士,教授,基金资助:
Shanjing YAO(),Linian CAI,Dongqiang LIN
Received:
2019-05-29
Revised:
2019-07-02
Online:
2019-10-05
Published:
2019-10-05
Contact:
Shanjing YAO
摘要:
黑曲霉具有极强的分泌蛋白的能力,其分泌的木质纤维素降解酶、淀粉酶、蛋白酶、脂肪酶等广泛应用于食品、饲料和生物技术等相关工业中。本文围绕黑曲霉生产同源和异源分泌蛋白,阐述黑曲霉作为分泌蛋白细胞工厂的巨大潜力。首先,通过总结黑曲霉表达系统的优越性,确定了黑曲霉作为分泌蛋白细胞工厂的开发前景。随后,介绍了初步构建黑曲霉分泌蛋白细胞工厂的一般流程。接着,总结了近十年来黑曲霉作为同源分泌酶细胞工厂的研究进展,提出在黑曲霉中定向表达分泌酶是深入研究黑曲霉自身分泌酶性质、功能和结构的理想策略。最后,总结了近年来黑曲霉作为异源分泌蛋白细胞工厂的研究进展,并从异源蛋白表达中遇到的难点出发介绍了完善黑曲霉细胞工厂来提高异源蛋白产量的对策。
中图分类号:
姚善泾, 蔡礼年, 林东强. 黑曲霉作为分泌蛋白细胞工厂的研究进展[J]. 化工学报, 2019, 70(10): 3690-3703.
Shanjing YAO, Linian CAI, Dongqiang LIN. Progress in Aspergillus niger as cell factory for secretory proteins[J]. CIESC Journal, 2019, 70(10): 3690-3703.
参考依据 | 大肠杆菌 | 黑曲霉 | 酵母 | 昆虫细胞 | 哺乳动物细胞 | 植物细胞 |
---|---|---|---|---|---|---|
转化难易 | 简单 | 较难 | 一般 | 较难 | 较难 | 较难 |
培养周期 | 1天以内 | 1周左右 | 1周左右 | 1周左右 | 1周左右 | 1月左右 |
培养成本 | 低 | 低 | 低 | 高 | 高 | 较高 |
分泌性能 | 低 | 高 | 较高 | 高 | 高 | 高 |
蛋白折叠 | 低 | 较高 | 较高 | 高 | 高 | 高 |
N-糖基化 | 无 | 哺乳动物型的糖核 | 高比例甘露聚糖 | 与哺乳动物细胞类似 | 哺乳动物细胞类型 | 与哺乳动物细胞类似 |
O-糖基化 | 无 | 有 | 有 | 有 | 有 | 有 |
表1 不同细胞表达系统的比较
Table 1 Comparison of different cell expression systems
参考依据 | 大肠杆菌 | 黑曲霉 | 酵母 | 昆虫细胞 | 哺乳动物细胞 | 植物细胞 |
---|---|---|---|---|---|---|
转化难易 | 简单 | 较难 | 一般 | 较难 | 较难 | 较难 |
培养周期 | 1天以内 | 1周左右 | 1周左右 | 1周左右 | 1周左右 | 1月左右 |
培养成本 | 低 | 低 | 低 | 高 | 高 | 较高 |
分泌性能 | 低 | 高 | 较高 | 高 | 高 | 高 |
蛋白折叠 | 低 | 较高 | 较高 | 高 | 高 | 高 |
N-糖基化 | 无 | 哺乳动物型的糖核 | 高比例甘露聚糖 | 与哺乳动物细胞类似 | 哺乳动物细胞类型 | 与哺乳动物细胞类似 |
O-糖基化 | 无 | 有 | 有 | 有 | 有 | 有 |
酶分类 | 酶种类 | 获取方式① |
---|---|---|
纤维素酶 | 内切葡聚糖酶 | D[ |
外切葡聚糖酶 | D[ | |
β-葡萄糖苷酶 | D[ | |
裂解多糖单氧化酶 | P[ | |
半纤维素酶 | 木聚糖酶 | D[ |
木糖苷酶 | D[ | |
甘露聚糖酶 | P[ | |
甘露糖苷酶 | P[ | |
乙酰木聚糖酯酶 | P[ | |
果胶酶 | 果胶甲酯酶 | P[ |
果胶酶 | D[ | |
聚半乳糖醛酸酶 | D[ | |
果胶裂解酶 | D[ | |
淀粉酶 | 葡糖淀粉酶 | D[ |
淀粉酶 | D[ | |
蛋白酶 | 肽酶 | D[ |
角质蛋白酶 | P[ | |
酸性蛋白酶 | D[ | |
氨肽酶 | P[ | |
其他酶 | 脂肪酶 | D[ |
α-葡萄糖苷酶 | D[ | |
植酸酶 | D[ | |
芸香苷酶 | P[ | |
阿魏酸酯酶 | P[ | |
鞣酸酶 | D[ | |
菊粉酶 | E[ | |
天冬酰胺酶 单宁酶 | D[ A[ |
表2 黑曲霉分泌酶
Table 2 Secretases of A. niger
酶分类 | 酶种类 | 获取方式① |
---|---|---|
纤维素酶 | 内切葡聚糖酶 | D[ |
外切葡聚糖酶 | D[ | |
β-葡萄糖苷酶 | D[ | |
裂解多糖单氧化酶 | P[ | |
半纤维素酶 | 木聚糖酶 | D[ |
木糖苷酶 | D[ | |
甘露聚糖酶 | P[ | |
甘露糖苷酶 | P[ | |
乙酰木聚糖酯酶 | P[ | |
果胶酶 | 果胶甲酯酶 | P[ |
果胶酶 | D[ | |
聚半乳糖醛酸酶 | D[ | |
果胶裂解酶 | D[ | |
淀粉酶 | 葡糖淀粉酶 | D[ |
淀粉酶 | D[ | |
蛋白酶 | 肽酶 | D[ |
角质蛋白酶 | P[ | |
酸性蛋白酶 | D[ | |
氨肽酶 | P[ | |
其他酶 | 脂肪酶 | D[ |
α-葡萄糖苷酶 | D[ | |
植酸酶 | D[ | |
芸香苷酶 | P[ | |
阿魏酸酯酶 | P[ | |
鞣酸酶 | D[ | |
菊粉酶 | E[ | |
天冬酰胺酶 单宁酶 | D[ A[ |
蛋白来源 | 蛋白种类 | 表达水平① | 参考文献 |
---|---|---|---|
人 | α1蛋白酶抑制剂 | 12 mg/L | [ |
人 | 白细胞介素-6 | 15 mg/L | [ |
人 | 溶菌酶 | 40 mg/L | [ |
马 | 溶菌酶 | 150 mg/L | [ |
牛 | 肠激酶 | 5 mg/L | [ |
利什曼虫 | 抗原蛋白 | 54 mg/L | [ |
福寿螺 | 纤维素酶 | SDS-PAGE | [ |
杏鲍菇 | 过氧物酶 | 466 U/L | [ |
云芝 | 漆酶 | 2700 U/L | [ |
黄孢原毛平革菌 | 锰过氧物酶 | 100 mg/L | [ |
黄孢原毛平革菌 | 木质素过氧物酶 | Western blot | [ |
里氏木霉 | 木聚糖酶,内切葡聚糖酶 | SDS-PAGE | [ |
嗜热子囊菌,里氏木霉 | 29个纤维素酶 | SDS-PAGE | [ |
白曲霉 | 酸性蛋白酶 | 9972 U/ml | [ |
米黑根毛霉 | 脂肪酶 | 15 U/ml | [ |
梨囊鞭菌属R | 纤维素酶 | SDS-PAGE | [ |
朱红密孔菌 | 漆酶 | SDS-PAGE | [ |
Caldariomyces fumago | 氯化物过氧物酶 | SDS-PAGE | [ |
海栖热袍菌 | 木聚糖酶 | 500 mg/L | [ |
解淀粉芽孢杆菌 | 纤维素酶 | SDS-PAGE | [ |
表3 黑曲霉异源表达的蛋白
Table 3 Proteins heterologously expressed in A. niger
蛋白来源 | 蛋白种类 | 表达水平① | 参考文献 |
---|---|---|---|
人 | α1蛋白酶抑制剂 | 12 mg/L | [ |
人 | 白细胞介素-6 | 15 mg/L | [ |
人 | 溶菌酶 | 40 mg/L | [ |
马 | 溶菌酶 | 150 mg/L | [ |
牛 | 肠激酶 | 5 mg/L | [ |
利什曼虫 | 抗原蛋白 | 54 mg/L | [ |
福寿螺 | 纤维素酶 | SDS-PAGE | [ |
杏鲍菇 | 过氧物酶 | 466 U/L | [ |
云芝 | 漆酶 | 2700 U/L | [ |
黄孢原毛平革菌 | 锰过氧物酶 | 100 mg/L | [ |
黄孢原毛平革菌 | 木质素过氧物酶 | Western blot | [ |
里氏木霉 | 木聚糖酶,内切葡聚糖酶 | SDS-PAGE | [ |
嗜热子囊菌,里氏木霉 | 29个纤维素酶 | SDS-PAGE | [ |
白曲霉 | 酸性蛋白酶 | 9972 U/ml | [ |
米黑根毛霉 | 脂肪酶 | 15 U/ml | [ |
梨囊鞭菌属R | 纤维素酶 | SDS-PAGE | [ |
朱红密孔菌 | 漆酶 | SDS-PAGE | [ |
Caldariomyces fumago | 氯化物过氧物酶 | SDS-PAGE | [ |
海栖热袍菌 | 木聚糖酶 | 500 mg/L | [ |
解淀粉芽孢杆菌 | 纤维素酶 | SDS-PAGE | [ |
1 | DavyA M, KildegaardH F, AndersenM R. Cell factory engineering[J]. Cell Systems, 2017, 4(3): 262-275. |
2 | van DijlJ M, HeckerM. Bacillus subtilis: from soil bacterium to super-secreting cell factory[J]. Microbial Cell Factories, 2013, 12(1): 3. |
3 | LiJ, NeubauerP. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides[J]. New Biotechnology, 2014, 31(6): 579-585. |
4 | MorelloE, Bermúdez-HumaránL G, LlullD, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion[J]. Journal of Molecular Microbiology and Biotechnology, 2007, 14(1/2/3): 48-58. |
5 | ChenW, QiJ, WuP, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(2/3): 401-417. |
6 | PscheidtB, GliederA. Yeast cell factories for fine chemical and API production[J]. Microbial Cell Factories, 2008, 7(1): 25. |
7 | 高教琪, 段兴鹏, 周雍进. 酵母细胞工厂生产脂肪酸及其衍生物[J]. 生物加工过程, 2018, 16(1): 19-30. |
GaoJ Q, DuanX P,ZhouY J. Production of fatty acids and their derivatives by yeast cell factories[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(1): 19-30. | |
8 | PuntP J, van BiezenN, ConesaA, et al. Filamentous fungi as cell factories for heterologous protein production[J]. Trends in Biotechnology, 2002, 20(5): 200-206. |
9 | DrugmandJ, SchneiderY, AgathosS N. Insect cells as factories for biomanufacturing[J]. Biotechnology Advances, 2012, 30(5): 1140-1157. |
10 | XuJ, DolanM C, MedranoG, et al. Green factory: plants as bioproduction platforms for recombinant proteins[J]. Biotechnology Advances, 2012, 30(5): 1171-1184. |
11 | O'CallaghanP M, JamesD C. Systems biotechnology of mammalian cell factories[J]. Briefings in Functional Genomics and Proteomics, 2008, 7(2): 95-110. |
12 | WangC, PflegerB F, KimS W. Reassessing Escherichia coli as a cell factory for biofuel production[J]. Current Opinion in Biotechnology, 2017, 45: 92-103. |
13 | CereghinoJ L, CreggJ M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66. |
14 | DinnisD M, JamesD C. Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature?[J]. Biotechnology and Bioengineering, 2005, 91(2): 180-189. |
15 | JinH, OuyangX, HuZ. Enhancement of epoxide hydrolase production by 60Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103[J]. Biotechnology and Applied Biochemistry, 2017, 64(3): 392-399. |
16 | OttenheimC, WernerK A, ZimmermannW, et al. Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis[J]. Biochemical Engineering Journal, 2015, 94: 9-14. |
17 | WangS, JiangB, ZhouX, et al. Study of a high-yield cellulase system created by heavy-ion irradiation-induced mutagenesis of Aspergillus niger and mixed fermentation with Trichoderma reesei[J]. Plos One, 2015, 10(12): e144233. |
18 | WardO P. Production of recombinant proteins by filamentous fungi[J]. Biotechnology Advances, 2012, 30(5): 1119-1139. |
19 | MeyerV, WuB, RamA F J. Aspergillus as a multi-purpose cell factory: current status and perspectives[J]. Biotechnology Letters, 2011, 33(3): 469-476. |
20 | FleißnerA, DerschP. Expression and export: recombinant protein production systems for Aspergillus[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1255-1270. |
21 | WardM, LinC, VictoriaD C, et al. Characterization of humanized antibodies secreted by Aspergillus niger[J]. Applied and Environmental Microbiology, 2004, 70(5): 2567-2576. |
22 | LiM, HongB, LiY. Expression of soluble human tumor necrosis factor receptor I in Aspergillus niger[J]. Chinese Science Bulletin, 2001, 46(11): 918-921. |
23 | BroekhuijsenM P, MatternI E, ContrerasR, et al. Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX-like processing of a glucoamylase-HIL6 fusion protein[J]. Journal of Biotechnology, 1993, 31(2): 135-145. |
24 | NevalainenK M H, Te'OV S J, BergquistP L. Heterologous protein expression in filamentous fungi[J]. Trends in Biotechnology, 2005, 23(9): 468-474. |
25 | 郭艳梅, 郑平, 孙际宾. 黑曲霉作为细胞工厂:知识准备与技术基础[J]. 生物工程学报, 2010, 26(10): 1410-1418. |
GuoY M, ZhengP, SunJ B. Aspergillus niger as a potential cellular factory: prior knowledge and key technology[J]. Chinese Journal of Biotechnology, 2010, 26(10): 1410-1418. | |
26 | ReillyM C, CampenS A, SimmonsB A, et al. Cloning and expression of heterologous cellulases and enzymes in Aspergillus niger[M]// Lübeck M. Cellulase. Humana Press, 2018: 123-134. |
27 | WangS, ChenH, TangX, et al. Molecular tools for gene manipulation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2017, 101(22): 8063-8075. |
28 | 顾丰颖, 高洁, 何国庆. 曲霉菌细胞工厂的现状及前景[J]. 食品工业科技, 2012, 33(23): 443-447. |
GuF Y, GaoJ, HeG Q. Aspergillus as a potential cell factory: current status and perspectives[J]. Science and Technology of Food Industry, 2012, 33(23): 443-447. | |
29 | MeyerV. Genetic engineering of filamentous fungi — progress, obstacles and future trends[J]. Biotechnology Advances, 2008, 26(2): 177-185. |
30 | PelH J, de WindeJ H, ArcherD B, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J]. Nature Biotechnology, 2007, 25(2): 221-231. |
31 | TaniS, KawaguchiT, KobayashiT. Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4829-4837. |
32 | StrickerA R, MachR L, de GraaffL H. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 211-220. |
33 | TsukagoshiN, KobayashiT, KatoM. Regulation of the amylolytic and (hemi-)cellulolytic genes in Aspergilli[J]. Journal of General and Applied Microbiology, 2001, 47(1): 1-19. |
34 | TsangA, ButlerG, PowlowskiJ, et al. Analytical and computational approaches to define the Aspergillus niger secretome[J]. Fungal Genetics and Biology, 2009, 46(1): S153-S160. |
35 | JacobsD I, OlsthoornM M A, MailletI, et al. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics[J]. Fungal Genetics and Biology, 2009, 46(1): 141-152. |
36 | SpohnerS C, MüllerH, QuitmannH, et al. Expression of enzymes for the usage in food and feed industry with Pichia pastoris[J]. Journal of Biotechnology, 2015, 202: 118-134. |
37 | De PourcqK, De SchutterK, CallewaertN. Engineering of glycosylation in yeast and other fungi: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 87(5): 1617-1631. |
38 | CaiL, XuS, LuT, et al. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger[J]. Journal of Biotechnology, 2019, 292: 12-22. |
39 | DobrevG T, ZhekovaB Y. Biosynthesis, purification and characterization of endoglucanase from xylanase producing strain Aspergillus niger B03[J]. Brazilian Journal of Microbiology, 2012, 43(1): 70-77. |
40 | RawatR, KumarS, ChadhaB S, et al. An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies[J]. Antonie van Leeuwenhoek, 2015, 107(1): 103-117. |
41 | 王红兵, 王荣柱, 陆涛, 等. 一种海洋黑曲霉耐盐内切纤维素酶的分离纯化和酶学性质研究[J]. 高校化学工程学报, 2016, 30(2): 410-416. |
WangH B, WangR Z, LuT, et al. Purification and characterization of a halotolerant endoglucanase from marine Aspergilla niger[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 410-416. | |
42 | LiC, WangH, YanT. Cloning, purification,and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494[J] |
Molecules, 2012, 17(8): 9774-9789. | |
43 | XueD, LiangL, LinD, et al. Thermal inactivation kinetics and secondary structure change of a low molecular weight halostable exoglucanase from a marine Aspergillus niger at high salinities[J]. Applied Biochemistry and Biotechnology, 2017, 183(3): 1111-1125. |
44 | XueD, LiangL, LinD, et al. Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities[J]. Process Biochemistry, 2017, 58: 85-91. |
45 | WoonJ S, MackeenM M, IlliasR M, et al. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches[J]. PeerJ, 2017, 5: e3909. |
46 | PatelH, KumarA K, ShahA. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11[J]. International Journal of Biological Macromolecules, 2018, 109: 1260-1269. |
47 | OrienteA, TramontinaR, de AndradesD, et al. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors[J]. Chemical Papers, 2015, 69(8): 1050-1057. |
48 | GongG, ZhengZ, LiuH, et al. Purification and characterization of a β-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin[J]. Journal of Microbiology and Biotechnology, 2014, 24(6): 788-794. |
49 | ChangK H, JoM N, KimK, et al. Purification and characterization of a ginsenoside Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239[J]. International Journal of Molecular Sciences, 2012, 13(12): 12140-12152. |
50 | ZhaoL, ZhouT, LiX, et al. Expression and characterization of GH3 β-glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance[J]. Microbiology, 2013, 82(3): 356-363. |
51 | AliN, XueY, GanL, et al. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from Aspergillus niger BE-21[J]. Applied Biochemistry and Microbiology, 2016, 52(5): 564-571. |
52 | DuL, MaL, MaQ, et al. Hydrolytic boosting of lignocellulosic biomass by a fungal lytic polysaccharide monooxygenase, AnLPMO15g from Aspergillus niger[J]. Industrial Crops and Products, 2018, 126: 309-315. |
53 | 马清. 黑曲霉多糖单加氧酶的克隆表达与协同性研究[D]. 天津: 天津科技大学, 2018. |
MaQ. Cloning of lytic polysaccharide monooxygenases genes from Aspergillus niger and research on its synergism activity[D]. Tianjin: Tianjin University of Science and Technology, 2018. | |
54 | DobrevG, ZhekovaB. Purification and characterization of endoxylanase Xln-2 from Aspergillus niger B03[J]. Turkish Journal of Biology, 2012, 36(1): 7-13. |
55 | TakahashiY, KawabataH, MurakamiS. Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII[J]. SpringerPlus, 2013, 2(1): 1-11. |
56 | Hmida-SayariA, TaktekS, ElgharbiF, et al. Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain[J]. Process Biochemistry, 2012, 47(12): 1839-1847. |
57 | DoT T, QuyenD T, NguyenT N, et al. Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger[J]. Protein Expression and Purification, 2013, 92(2): 196-202. |
58 | LiuT, ZhangJ. High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii[J]. Applied Biological Chemistry, 2018, 61(4): 373-381. |
59 | GaoH, YanP, ZhangB, et al. Expression of Aspergillus niger IA-001 endo-β-1,4-xylanase in Pichia pastoris and analysis of the enzymic characterization[J]. Applied Biochemistry and Biotechnology, 2014, 173(8): 2028-2041. |
60 | LiX R, XuH, XieJ, et al. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264[J]. Journal of Microbiology and Biotechnology, 2014, 24(4): 483-488. |
61 | FuG, WangY, WangD, et al. Cloning, expression, and characterization of an GHF 11 xylanase from Aspergillus niger XZ-3S[J]. Indian Journal of Microbiology, 2012, 52(4): 682-688. |
62 | YiX, ShiY, XuH, et al. Hyperexpression of two Aspergillus niger xylanase genes in Escherichia coli and characterization of the gene products[J]. Brazilian Journal of Microbiology, 2010, 41(3): 778-786. |
63 | BoyceA, WalshG. Purification and characterisation of a thermostable β-xylosidase from Aspergillus niger van tieghem of potential application in lignocellulosic bioethanol production[J]. Applied Biochemistry and Biotechnology, 2018, 186(3): 712-730. |
64 | Scott-CraigJ S, BorruschM S, BanerjeeG, et al. Biochemical and molecular characterization of secreted α-xylosidase from Aspergillus niger[J]. Journal of Biological Chemistry, 2011, 286(50): 42848-42854. |
65 | ChoengpanyaK, ArthornthurasukS, Wattana-AmornP, et al. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28[J]. Protein Expression and Purification, 2015, 115: 132-140. |
66 | Amaro-ReyesA, García-AlmendárezB E, Vázquez-MandujanoD G, et al. Homologue expression of a β-xylosidase from native Aspergillus niger[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1311-1319. |
67 | LuoW, HuangJ, HuangC, et al. Preliminary X-ray diffraction analysis of thermostable β-1,4-mannanase from Aspergillus niger BK01[J]. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, 69(10): 1100-1102. |
68 | LiJ, ZhaoS, TangC, et al. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris[J]. Journal of Agricultural and Food Chemistry, 2012, 60(3): 765-773. |
69 | YuS, LiZ, WangY, et al. High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris[J]. Biotechnology Letters, 2015, 37(9): 1853-1859. |
70 | FliedrováB, GerstorferováD, KřenV, et al. Production of Aspergillus niger β-mannosidase in Pichia pastoris[J]. Protein Expression and Purification, 2012, 85(2): 159-164. |
71 | ZhaoW, ZhengJ, ZhouH. A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS 513.88: constitutive overexpression and high-density fermentation in Pichia pastoris[J]. Bioresource Technology, 2011, 102(16): 7538-7547. |
72 | DemoG, FliedrováB, WeignerováL, et al. Crystallization and preliminary X-ray crystallographic analysis of recombinant β-mannosidase from Aspergillus niger[J]. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2013, 69(3): 288-291. |
73 | WuH, XueY, LiH, et al. Heterologous expression of a new acetyl xylan esterase from Aspergillus niger BE-2 and its synergistic action with xylan-degrading enzymes in the hydrolysis of bamboo biomass[J]. BioResources, 2017, 1(12): 434-447. |
74 | JiangX, ChenP, YinM, et al. Constitutive expression, purification and characterisation of pectin methylesterase from Aspergillus niger in Pichia pastoris for potential application in the fruit juice industry[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 375-381. |
75 | ZhangZ, DongJ, ZhangD, et al. Expression and characterization of a pectin methylesterase from Aspergillus niger ZJ5 and its application in fruit processing[J]. Journal of Bioscience and Bioengineering, 2018, 126(6): 690-696. |
76 | AhmedI, ZiaM A, HussainM A, et al. Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger: its purification and characterization[J]. Journal of Radiation Research and Applied Sciences, 2019, 9(2): 148-154. |
77 | AnandG, YadavS, YadavD. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice[J]. 3 Biotech, 2017, 7(2):122. |
78 | ZhouH, LiX, GuoM, et al. Secretory expression and characterization of an acidic endo-polygalacturonase from Aspergillus niger SC323 in Saccharomyces cerevisiae[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 999-1006. |
79 | PoturcuK, OzmenI, BiyikH H. Characterization of an alkaline thermostable pectin lyase from newly isolated Aspergillus niger WHAK1 and its application on fruit juice clarification[J]. Arabian Journal for Science and Engineering, 2017, 42(1): 19-29. |
80 | SlivinskiC T, MachadoA V L, IulekJ, et al. Biochemical characterisation of a glucoamylase from Aspergillus niger produced by solid-state fermentation[J]. Brazilian Archives of Biology and Technology, 2011, 54(3): 559-568. |
81 | BagheriA, KhodarahmiR, MostafaieA. Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: relation to starch processing[J]. Food Chemistry, 2014, 161: 270-278. |
82 | GudiS K, GurramkondaC, RatherG, et al. Glucoamylase from a newly isolated Aspergillus niger FME: detergent-mediated production, purification, and characterization[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(4): 427-433. |
83 | WangJ, ZhangY, WangX, et al. Biochemical characterization and molecular mechanism of acid denaturation of a novel α-amylase from Aspergillus niger[J]. Biochemical Engineering Journal, 2018, 137: 222-231. |
84 | WangJ, LiY, LuF. Molecular cloning and biochemical characterization of an α-amylase family from Aspergillus niger[J]. Electronic Journal of Biotechnology, 2018, 32: 55-62. |
85 | LópezD N, GalanteM, RuggieriG, et al. Peptidase from Aspergillus niger NRRL 3: optimization of its production by solid-state fermentation, purification and characterization[J]. LWT, 2018, 98: 485-491. |
86 | NyyssöläA, PihlajaniemiV, JärvinenR, et al. Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88[J]. Enzyme and Microbial Technology, 2013, 52(4/5): 272-278. |
87 | ChenX, ZhouB, XuM, et al. Prokaryotic expression and characterization of a keratinolytic protease from Aspergillus niger[J]. Biologia, 2015, 70(2): 157-164. |
88 | YinL, HsuT, JiangS. Characterization of acidic protease from Aspergillus niger BCRC 32720[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3): 662-666. |
89 | AhmedI, ZiaM A, IftikharT, et al. Characterization and detergent compatibility of purified protease produced from Aspergillus niger by utilizing agro wastes[J]. Bioresources, 2011, 6(4): 4505-4522. |
90 | 王鑫, 金鹏, 宋鹏, 等. 黑曲霉酸性蛋白酶EXPA的克隆表达与酶学性质解析[J]. 食品与发酵工业, 2019, (3): 40-46. |
WangX, JinP, SongP, et al. Cloning, expression and biochemical characterization of a novel acid protease EXPA from Aspergillus niger[J]. Food and Fermentation Industries, 2019, (3): 40-46. | |
91 | 乔雅丽, 董自星, 宋鹏, 等. 黑曲霉天冬氨酰氨肽酶的分子克隆与酶学性质解析[J]. 食品研究与开发, 2017, 38(24): 181-187. |
QiaoY L, DongZ X, SongP, et al. Molecular cloning and biochemical characterization of anaspartyl aminopeptidase from Aspergillus niger[J]. Food Research and Development, 2017, 38(24): 181-187. | |
92 | LiuG, HuS, LiL, et al. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512[J]. Lipids, 2015, 50(11): 1155-1163. |
93 | OshoM B, AkpanI, AdioO Q. Screening, optimization and characterization of extracellular lipase of Aspergillus niger ATCC 1015[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 5(2): 172-176. |
94 | ZhangX, AiY, XuY, et al. High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro[J]. Food Chemistry, 2019, 274: 305-313. |
95 | YangJ, SunJ, YanY. lip2, a novel lipase gene cloned from Aspergillus niger exhibits enzymatic characteristics distinct from its previously identified family member[J]. Biotechnology Letters, 2010, 32(7): 951-956. |
96 | 李杰, 张贺, 王欣, 等. 多拷贝脂肪酶基因在黑曲霉中表达研究[J]. 东北农业大学学报, 2018, 49(4): 49-58. |
LiJ, ZhangH, WangX, et al. Expression of multicopy lipase gene in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2018, 49(4): 49-58. | |
97 | Del MoralS, Barradas-DermitzD M, Aguilar-UscangaM G. Production and biochemical characterization of α-glucosidase from Aspergillus niger ITV-01 isolated from sugar cane bagasse[J]. 3 Biotech, 2018, 8(1): 7. |
98 | ChenD, TongX, ChenS, et al. Heterologous expression and biochemical characterization of α-glucosidase from Aspergillus niger by Pichia pastroris[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4819-4824. |
99 | SoniS K, MagdumA, KhireJ M. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563[J]. World Journal of Microbiology and Biotechnology, 2010, 26(11): 2009-2018. |
100 | Neira-VielmaA A, AguilarC N, IlyinaA, et al. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate[J]. Biotechnology Reports, 2018, 17: 49-54. |
101 | GunashreeB S, VenkateswaranG. Extracellular phytase from Aspergillus niger CFR 335: purification and characterization[J]. Journal of Food Science and Technology, 2015, 52(7): 4558-4564. |
102 | BhavsarK, Ravi KumarV, KhireJ M. High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1407-1417. |
103 | MullaneyE J, LocovareH, SethumadhavanK, et al. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1367-1372. |
104 | 陈璐璐, 江连洲, 邓晨旭, 等. 构建食品级植酸酶黑曲霉工程菌[J]. 农业生物技术学报, 2014, 22(9): 1182-1188. |
ChenL L, JiangL Z, DengC X, et al. Construction of phytase food-grade engineering strain of Aspergillus niger[J]. Journal of Agricultural Biotechnology, 2014, 22(9): 1182-1188. | |
105 | ŠimčíkováD, KotikM, WeignerováL, et al. α-L-rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: characterization and synthetic potential of a novel diglycosidase[J]. Advanced Synthesis & Catalysis, 2015, 357(1): 107-117. |
106 | ChenX, ZhouM, HuangZ, et al. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris[J]. Biologia, 2016, 71(6): 626-631. |
107 | 刘君, 江连洲, 高博, 等. 阿魏酸酯酶在黑曲霉中的同源表达[J]. 食品工业科技, 2014, (20): 200-203. |
LiuJ, JiangL Z, GaoB, et al. Homologous expression of ferulic acid esterase in Aspergillus niger[J]. Science and Technology of Food Industry, 2014, (20): 200-203. | |
108 | Al-MraaiS T Y, Al-FekaikiD F, Al-ManhelA J A. Purification and characterization of tannase from the local isolate of Aspergillus niger[J]. Journal of Applied Biology & Biotechnology, 2019, 7(1): 29-34. |
109 | LiuF, WangB, YeY, et al. High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host[J]. Protein Expression and Purification, 2018, 144: 71-75. |
110 | YedahalliS S, RehmannL, BassiA. Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization[J]. Biotechnology Progress, 2016, 32(3): 629-637. |
111 | ValaA K, SachaniyaB, DudhagaraD, et al. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste[J]. International Journal of Biological Macromolecules, 2018, 108: 41-46. |
112 | 李杰, 岳苗苗, 江连洲, 等. 单宁酶基因在黑曲霉中的同源表达[J]. 东北农业大学学报, 2014, 45(7): 61-65. |
LiJ, YueM M, JiangL Z, et al. Tannase gene homologous expressing in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2014, 45(7): 61-65. | |
113 | KarnaukhovaE, OphirY, TrinhL, et al. Expression of human α1-proteinase inhibitor in Aspergillus niger[J]. Microbial Cell Factories, 2007, 6: 34. |
114 | SpencerA, Morozov-RocheL A, NoppeW, et al. Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: comparisons with the production of hen and human lysozymes[J]. Protein Expression and Purification, 1999, 16(1): 171. |
115 | SvetinaM, KrasevecN, Gaberc-PorekarV, et al. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger[J]. Journal of Biotechnology, 2000, 76(2/3): 245-251. |
116 | Magaña-OrtízD, FernándezF, LoskeA M, et al. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens[J]. Current Microbiology, 2018, 75(1): 40-48. |
117 | YangP, ZhangH, ZhengZ. Glyceraldehyde-3-phosphate dehydrogenase promoter from enoki mushroom drove gene expression of exogenous cellulase in Aspergillus niger[J]. Biomass Conversion and Biorefinery, 2018, 8(1): 11-17. |
118 | EibesG M, Lú-ChauT A, Ruiz-DueñasF J, et al. Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts[J]. Bioprocess and Biosystems Engineering, 2009, 32(1): 129-134. |
119 | BohlinC, JonssonL J, RothR, et al. Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger[J]. Applied Biochemistry and Biotechnology, 2006, 129/130/131/132: 195-214. |
120 | ConesaA, van den HondelC A, PuntP J. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7): 3016-3023. |
121 | AifaM S, SayadiS, GargouriA. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Aspergillus niger[J]. Biotechnology Letters, 1999, 21(10): 849-853. |
122 | ZylS R W V. Constitutive expression of the Trichoderma reesei β-1,4-xylanase gene (xyn2) and the β-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media[J]. Applied Microbiology and Biotechnology, 2002, 58(4): 461-468. |
123 | Amaike CampenS, LynnJ, SibertS J, et al. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger[J]. Plos One, 2017, 12(12): e189604. |
124 | 董文超. 白曲霉酸性蛋白酶在无孢黑曲霉SH-2中的表达研究[D]. 广州: 华南理工大学, 2018. |
DongW C. Expression of kawachii acid protease in non-spore Aspergillus niger SH-2[D]. Guangzhou: South China University of Technology, 2018. | |
125 | 潘力, 王云艳, 王斌, 等. 根癌农杆菌介导脂肪酶在无孢黑曲霉中的高效表达[J]. 华南理工大学学报(自然科学版), 2012, 40(5): 84-89. |
PanL, WangY Y, WangB, et al. Effective expression of lipase in non-spore Aspergillus nigerviaAgrobacterium tumefaciens-mediated transformation[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(5): 84-89. | |
126 | XueD, LiangL, ZhengG, et al. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition[J]. Biochemical Engineering Journal, 2017, 117: 156-161. |
127 | RecordE, PuntP J, ChamkhaM, et al. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme[J]. European Journal of Biochemistry, 2002, 269(2): 602-609. |
128 | ConesaA, van de VeldeF, van RantwijkF, et al. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme[J]. Journal of Biological Chemistry, 2001, 276(21): 17635-17640. |
129 | ZhangJ, PanJ, GuanG, et al. Expression and high-yield production of extremely thermostable bacterial xylanase B in Aspergillus niger[J]. Enzyme and Microbial Technology, 2008, 43(7): 513-516. |
130 | XueD, LinD, GongC, et al. Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger[J]. Process Biochemistry, 2017, 52: 115-122. |
131 | GanzlinM, RinasU. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques[J]. Journal of Biotechnology, 2008, 135(3): 266-271. |
132 | KlugeJ, TerfehrD, KückU. Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi[J]. Applied Microbiology and Biotechnology, 2018, 102(15): 6357-6372. |
133 | KatoM. An overview of the CCAAT-box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement[J]. Bioscience Biotechnology and Biochemistry, 2005, 69(4): 663-672. |
134 | LiuJ, LiJ, ShinH, et al. Metabolic engineering of Aspergillus oryzae for efficient production of L-malate directly from corn starch[J]. Journal of Biotechnology, 2017, 262: 40-46. |
135 | VerdoesJ C, PuntP J, van den HondelC A M J. Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi[J]. Applied Microbiology and Biotechnology, 1995, 43(2): 195-205. |
136 | KodaA, BogakiT, MinetokiT, et al. High expression of a synthetic gene encoding potato α-glucan phosphorylase in Aspergillus niger[J]. Journal of Bioscience and Bioengineering, 2005, 100(5): 531-537. |
137 | HamannT, LangeL. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae[J]. Journal of Biotechnology, 2006, 126(3): 265-276. |
138 | WangH, FengL, NiuD. Relationship between mRNA stability and intron presence[J]. Biochemical and Biophysical Research Communications, 2007, 354(1): 203-208. |
139 | CurranK A, KarimA S, GuptaA, et al. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications[J]. Metabolic Engineering, 2013, 19: 88-97. |
140 | XuY, WangY, LiuT, et al. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger[J]. Biotechnology Letters, 2018, 40(6): 949-955. |
141 | ValkonenM, WardM, WangH, et al. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response[J]. Applied and Environmental Microbiology, 2003, 69(12): 6979-6986. |
142 | WuY, SunX, XueX, et al. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei[J]. Enzyme and Microbial Technology, 2017, 106: 83-87. |
143 | CarvalhoN D S P, ArentshorstM, KooistraR, et al. Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 357-373. |
144 | YoonJ, AishanT, MaruyamaJ I, et al. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzaevia disruption of vacuolar protein sorting receptor gene Aovps10[J]. Applied and Environmental Microbiology, 2010, 76(17): 5718-5727. |
145 | WangL, RidgwayD, GuT, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations[J]. Biotechnology Advances, 2005, 23(2): 115-129. |
146 | DriouchH, SommerB, WittmannC. Morphology engineering of Aspergillus niger for improved enzyme production[J]. Biotechnology and Bioengineering, 2010, 105(6): 1058. |
147 | SunX, SuX. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi[J]. World Journal of Microbiology and Biotechnology, 2019, 35(4): 54. |
148 | van den HomberghJ P T W, van de VondervoortP J I, Fraissinet-TachetL, et al. Aspergillus as a host for heterologous protein production: the problem of proteases[J]. Trends in Biotechnology, 1997, 15(7): 256-263. |
149 | 刘畅, 李军, 马腾, 等. 黑曲霉的紫外诱变及酸性蛋白酶缺陷株的选育[J]. 河北科技师范学院学报, 2012, 26(1): 72-76. |
LiuC, LiJ, MaT, et al. Mutagenesis and screening of mutant of Aspergillus niger deficient in acid protease[J]. Journal of Hebei Normal University of Science & Technology, 2012, 26(1): 72-76. | |
150 | 张玉梅, 李军, 国石磊, 等. 复合诱变选育酸性蛋白酶缺陷菌株[J]. 食品科技, 2014, 39(5): 15-19. |
ZhangY M, LiJ, GuoS L, et al. Screening of deficient acid protease producing strains with compound mutagenesis[J]. Food Science and Technology, 2014, 39(5): 15-19. | |
151 | 赵春田, 彭远义, 唐国敏, 等. 黑曲霉pepD基因阻断突变菌株的构建及功能分析[J]. 菌物学报, 2005, (3): 360-366. |
ZhaoC T, PengY Y, TangG M, et al. Construction of pepD gene disruption mutant in Aspergillus niger and its functional analysis[J]. Mycosystema, 2005, (3): 360-366. | |
152 | 孙晶, 李景鹏, 王敖全, 等. 黑曲霉pepB基因缺失菌株的构建及其功能分析[J]. 微生物学报, 2004, (6): 766-770. |
SunJ, LiJ P, WangA Q, et al. Construction and functional analysis of the pepB gene disruptant in Aspergillus niger[J]. Acta Microbiologica Sinica, 2004, (6): 766-770. | |
153 | PuntP J, SchurenF H J, LehmbeckJ, et al. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes[J]. Fungal Genetics and Biology, 2008, 45(12): 1591-1599. |
154 | 李丹丹. 基于CRISPR系统的丝状真菌基因组快速编辑[D]. 福州: 福州大学, 2017. |
LiD D. Fast genome editing of filamentous fungi based on CRISPR system[D]. Fuzhou: Fuzhou University, 2017. | |
155 | Martins-SantanaL, NoraL C, Sanches-MedeirosA, et al. Systems and synthetic biology approaches to engineer fungi for fine chemical production[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 117. |
156 | KnufC, NielsenJ. Aspergilli: systems biology and industrial applications[J]. Biotechnology Journal, 2012, 7(9): 1115-1147. |
[1] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[2] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[3] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[9] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[10] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[11] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[12] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[13] | 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805. |
[14] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[15] | 徐银龙, 郑文杰, 王琳, 薛中飞, 谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究[J]. 化工学报, 2022, 73(5): 2222-2232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||