化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3748-3763.DOI: 10.11949/0438-1157.20190616
收稿日期:
2019-06-02
修回日期:
2019-09-03
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
徐铜文
作者简介:
葛亮(1986—),男,博士,副研究员,基金资助:
Liang GE1(),Bin WU2(),Xin WANG1,Zhang ZHAO1,Tongwen XU1()
Received:
2019-06-02
Revised:
2019-09-03
Online:
2019-10-05
Published:
2019-10-05
Contact:
Tongwen XU
摘要:
MOFs作为一类具有三维孔结构的新型框架材料,在催化、储能和分离领域均有广泛的应用前景,而MOFs的水稳定性一直是限制其扩大应用的壁垒。随着水稳定性MOFs材料不断涌现以及人们对MOFs水稳定性机理认识的加深,众多的学者开始关注MOFs分离膜在水体系下物质分离的应用研究。综述了围绕MOFs分离膜在水系环境下的分离应用研究展开,概述了MOFs水稳定性的影响因素,MOFs分离膜的制备及其在染料废水处理、脱盐、重金属离子去除和离子选择性分离等领域的应用研究,并对MOFs分离膜未来发展趋势进行了展望。
中图分类号:
葛亮,伍斌,王鑫,赵璋,徐铜文. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763.
Liang GE,Bin WU,Xin WANG,Zhang ZHAO,Tongwen XU. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763.
1 | FurukawaH, CordovaK E, KeeffeM O, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
2 | LiX, WangB, CaoY H, et al. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications[J]. ACS Sustain. Chem. Eng., 2019, 7(5): 4548-4563. |
3 | BurtchN C, JasujaH, WaltonK S, Water stability and adsorption in metal-organic frameworks[J]. Chem. Rev., 2014, 114(20): 10575-10612. |
4 | LowJ J, BeninA I, JakubczakP, et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. J. Am. Chem. Soc., 2009, 131(43): 15834-15842. |
5 | ColomboV, GalliS, ChoiH J, et al. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites[J]. Chem. Sci., 2011, 2: 1311-1319. |
6 | ChoiH J, DincăM, DaillyA, et al. Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate[J]. Energy Environ. Sci., 2010, 3: 117-123. |
7 | DesaiA V, MannaB, KarmakarA, et al. A water-stable cationic metal-organic framework as a dual adsorbent of oxoanion pollutants[J]. Angew. Chem. Int. Ed., 2016, 55(27): 7811-7815. |
8 | YuanS, FengL, WangK C, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Adv. Mater., 2018, 30(37): 1704303. |
9 | JiangH L, FengD W, WangK C, et al. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence[J]. J. Am. Chem. Soc., 2013, 135(37): 13934-13938. |
10 | JiangH L, FengD W, LiuT F, et al. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. J. Am. Chem. Soc., 2012, 134(36): 14690-14693. |
11 | FengD W, GuZ Y, LiJ R, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10307-10310. |
12 | FengD W, ChungW C, WeiZ, et al. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. J. Am. Chem. Soc., 2013, 135(45): 17105-17110. |
13 | PearsonR G. Hard and soft acids and bases[J]. J. Am. Chem. Soc., 1963, 85(22): 3533-3539. |
14 | KangI J, KhanN A, HaqueE, et al. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chemistry, 2011, 17(23): 6437-6442. |
15 | BellarosaL, Gutierrez-SevillanoJ J, CaleroS, et al. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family[J]. Phys. Chem. Chem. Phys., 2013, 15: 17696-17704. |
16 | TaylorJ M, VaidhyanathanR, IremongerS S, et al. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers[J]. J. Am. Chem. Soc., 2012, 134(35): 14338-14340. |
17 | LeeY J, ChangY J, LeeD J, et al. Water stable metal-organic framework as adsorbent from aqueous solution: a mini-review[J]. J. Taiwan Inst. Chem. E., 2018, 93: 176-183. |
18 | JiY L, QianW J, YuY W, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese J. Chem. Eng., 2017, 25(11): 1639-1652. |
19 | LiuX L, DemirN K, WuZ T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J. Am. Chem. Soc., 2015, 137(22): 6999-7002. |
20 | PauziM Z M, MahpozN M, AbdullahN, et al. Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications[J]. Sep. Purif. Technol., 2019, 217: 247-257. |
21 | HuY X, DongX L, NanJ P, et al. Metal-organic framework membranes fabricated via reactive seeding[J]. Chem. Commun., 2011, 47: 737-739. |
22 | ZhuY Q, GuptaK M, LiuQ, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385: 75-82. |
23 | MahpozN M, AbdullahN, PauziM Z M, et al. Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination[J]. Korean J. Chem. Eng., 2019, 36(3): 439-449. |
24 | LiZ, YangP P, GaoZ Z, et al. A new ZIF molecular-sieving membrane for high-efficiency dye removal[J]. Chem. Commun., 2019, 55: 3505-3508. |
25 | LiY B, WeeL H, VolodinA, et al. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method[J]. Chem. Commun., 2015, 51: 918-920. |
26 | DukeM C, ZhuB, DohertyC M, et al. Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes[J]. Desalination, 2016, 377: 128-137. |
27 | WangX R, ZhaiL Z, WangY X, et al. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing[J]. ACS Appl. Mater. Interfaces, 2017, 9(43): 37848-37855. |
28 | YuanJ W, HungW S, ZhuH P, et al. Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater[J]. J. Membrane Sci., 2019, 572: 20-27. |
29 | YaoJ F, DongD H, LiD, et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate[J]. Chem. Commun., 2011, 47: 2559-2561. |
30 | WangN X, LiX T, WangL, et al. Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness[J]. ACS Appl. Mater. Interfaces, 2016, 8(34): 21979-21983. |
31 | ShamsaeiE, LinX C, LowZ X, et al. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate[J]. ACS Appl. Mater. Interfaces, 2016, 8(9): 6236-6244. |
32 | BarankovaE, TanX Y, VillalobosL F, et al. A metal chelating porous polymeric support: the missing link for a defect-free metal-organic framework composite membrane[J]. Angew. Chem. Int. Ed., 2017, 56(11): 2965-2968. |
33 | ZhangH C, HouJ, HuY X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Sci. Adv., 2018, 4: eaaq0066. |
34 | XuT T, ShehzadM A, YuD B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12: 1-6. |
35 | AngH X, HongL. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration[J]. ACS Appl. Mater. Interfaces,2017, 9(33): 28079-28088. |
36 | MaX H, YangZ, YaoZ K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. J. Membrane Sci., 2017, 525: 269-276. |
37 | WangN X, LiuT J, ShenH P, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration[J]. AIChE Journal, 2016, 62(2): 538-546. |
38 | ZhangR, JiS L, WangN X, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9775-9779. |
39 | GuoY, YingY L, MaoY Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J]. Angew. Chem. Int. Ed., 2016, 55(48): 15120-15124. |
40 | YangL B, WangZ, ZhangJ L. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal[J]. J. Membrane Sci., 2017, 532: 76-86. |
41 | YangL B, WangZ, ZhangJ L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation assisted interfacial reaction[J]. J. Mater. Chem. A, 2017, 5: 15342-15355. |
42 | GuoY, WangX B, HuP, et al. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules[J]. Applied Materials Today, 2016, 5: 103-110. |
43 | WangY, LiX Y, ZhaoS F, et al. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance[J]. Ind. Eng. Chem. Res., 2019, 58(1): 195-206. |
44 | QiuM, HeC J. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer[J]. J. Hazard. Mater., 2019, 367: 339-347. |
45 | WangL Y, FangM Q, LiuJ, et al. Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications[J]. ACS Appl. Mater. Interfaces, 2015, 7(43): 24082-24093. |
46 | ZhuJ Y, QinL J, UlianaA, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl. Mater. Interfaces, 2017, 9(2): 1975-1986. |
47 | BaoY P, ChenY F, LimT T, et al. A novel metal-organic framework (MOF)-mediated interfacial polymerization for direct deposition of polyamide layer on ceramic substrates for nanofiltration[J]. Adv. Mater. Interfaces, 2019, 6(9): 1900132. |
48 | ZhangP, GongJ L, ZengG M, et al. Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure[J]. Chemosphere, 2018, 204: 378-389. |
49 | GuanK C, ZhaoD, ZhangM C, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance[J]. J. Membrane Sci., 2017, 542: 41-51. |
50 | LiuY C, ZhuM, ChenM Y, et al. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye[J]. Chem. Eng. J., 2019, 359: 47-57. |
51 | DennyJ M S, CohenS M. In situ modification of metal-organic frameworks in mixed-matrix membranes[J]. Angew. Chem. Int. Ed., 2015, 54(31): 9029-9032. |
52 | LiuT Y, YuanH G, LiuY Y, et al. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity[J]. ACS Nano, 2018, 12(9): 9253-9265. |
53 | MakhethaT A, MoutloaliR M. Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection[J]. J. Membrane Sci., 2018, 554: 195-210. |
54 | ZhangY Y, FengX, LiH, et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane[J]. Angew. Chem. Int. Ed., 2015, 54(14): 4259-4263. |
55 | RuanH M, GuoC M, YuH W, et al. Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions[J]. Ind. Eng. Chem. Res., 2016, 55(46): 12099-12110. |
56 | MohammadnezhadF, FeyziM, ZinadiniS. A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation[J]. J. Ind. Eng. Chem., 2019, 71: 99-111. |
57 | ZirehpourA, RahimpourA, UlbrichtM. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane[J]. J. Membrane Sci., 2017, 531: 59-67. |
58 | WangL D, BoutilierM S, KidambiP R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nat. Nanotech., 2017, 12: 509-522. |
59 | TrinhD X, TranT P N, TaniikeT. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration[J]. Sep. Purif. Technol., 2017, 177: 249-256. |
60 | WangL Y, FangM Q, LiuJ, et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water[J]. RSC Adv., 2015, 5: 50942-50954. |
61 | BasuS, BalakrishnanM. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams[J]. Sep. Purif. Technol., 2017, 179: 118-125. |
62 | ChenY B, LiuH Q, HuX Y, et al. PVDF/Cu-BTC composite membranes for dye separation[J]. Fibers and Polymers, 2017, 18(7): 1250-1254. |
63 | LiY B, WeeL H, MartensJ A, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance[J]. J. Membrane Sci., 2017, 523: 561-566. |
64 | GuoY, PengX S. Mass transport through metal organic framework membranes[J]. Science China Mater., 2019, 62(1): 25-42. |
65 | PengY, YaoR, YangW S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification[J]. Chem. Commun., 2019, 55: 3935-3938. |
66 | MaJ, GuoX Y, YingY P, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance[J]. Chem. Eng. J., 2017, 313: 890-898. |
67 | ElrasheedyA, NadyN, BassyouniM, et al. Metal organic framework based polymer mixed matrix membranes: review on applications in water purification[J]. Membranes, 2019, 9(7): 88. |
68 | Cay-DurgunP, LindM L. Nanoporous materials in polymeric membranes for desalination[J]. Curr. Opin. Chem. Eng., 2018, 20: 19-27. |
69 | GohP S, IsmailA F. A review on inorganic membranes for desalination and wastewater treatment[J]. Desalination, 2018, 434: 60-80. |
70 | HuZ Q, ChenY F, JiangJ W. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation[J]. J. Chem. Phys., 2011, 134(13): 134705. |
71 | GuptaK M, ZhangK, JiangJ W. Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups[J]. Langmuir, 2015, 31(48): 13230-13237. |
72 | KadhomM, HuW M, DengB L. Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination[J]. Membranes, 2017, 7(2): 31. |
73 | DuanJ T, PanY C, PachecoF, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. J. Membrane Sci., 2015, 476: 303-310. |
74 | HeY R, TangY P, MaD C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. J. Membrane Sci., 2017, 541: 262-270. |
75 | MaD C, PehS B, HanG, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7523-7534. |
76 | DaiR B, ZhangX R, LiuM X, et al. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis[J]. J. Membrane Sci., 2019, 573: 46-54. |
77 | MaD, HanG, PehS B, et al. Water-stable metal-organic framework UiO-66 for performance enhancement of forward osmosis membranes[J]. Ind. Eng. Chem. Res., 2017, 56: 12773-12782. |
78 | ZhaiZ, ZhaoN, DongW J, et al. In situ assembly of a zeolite imidazolate framework hybrid thin-film nanocomposite membrane with enhanced desalination performance induced by noria-polyethyleneimine codeposition[J]. ACS Appl. Mater. Interfaces, 2019, 11(13): 12871-12879. |
79 | GahlotS, YadavV, SharmaP P, et al. Zn-MOF@SPES composite membranes: synthesis, characterization and its electrochemical performance[J]. Sep. Sci. Technol., 2018, 54(3): 377-385. |
80 | WangP F, WangM, LiuF, et al. Ultrafast ion sieving using nanoporous polymeric membranes[J]. Nature Commun., 2018, 9: 569. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[9] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[10] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[11] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[12] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[13] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||