化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3764-3775.DOI: 10.11949/0438-1157.20190704
收稿日期:
2019-06-21
修回日期:
2019-08-13
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
王建川,魏子栋
作者简介:
袁伟(1995—),男,硕士研究生,基金资助:
Wei YUAN(),Lingping ZENG,Jianchuan WANG(),Zidong WEI()
Received:
2019-06-21
Revised:
2019-08-13
Online:
2019-10-05
Published:
2019-10-05
Contact:
Jianchuan WANG,Zidong WEI
摘要:
阴离子交换膜燃料电池因具有可使用非贵金属催化剂及催化反应动力学快等优点,是一种清洁高效的能源来源,但其商业化进展一直受制于高性能阴离子交换膜的开发。目前,阴离子交换膜主要面临着离子传导率低和稳定性差问题。研究者们分别围绕提高离子传导率(同时维持机械稳定性)和增加碱性稳定性开展了大量的研究工作。其中构建高效离子传输通道被认为是一种有效解决阴离子交换膜离子传导率和机械稳定性平衡问题的有效方法。本文综述了构建离子通道的常见方法,包括纳米复合、微相分离、构建互穿聚合物网络、构建离子簇。
中图分类号:
袁伟, 曾玲平, 王建川, 魏子栋. 燃料电池阴离子交换膜高效离子传输通道构建进展[J]. 化工学报, 2019, 70(10): 3764-3775.
Wei YUAN, Lingping ZENG, Jianchuan WANG, Zidong WEI. Progress in construction of high efficient ion transport channels for anion exchange membranes fuel cell[J]. CIESC Journal, 2019, 70(10): 3764-3775.
图2 季铵化纳米纤维素在QPPO基体内分散形态TEM照片(a);离子通道示意图及TEM观测图,黑色区域代表离子交换基团(b)[43]
Fig.2 TEM pictures of morphology of QCNC in QPPO matrix (a); schematic diagram of ion channels and observed ion channel with TEM, black region representative ion exchange groups (b)[43]
样品 | 填料 | 基膜 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/ % | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
1.0%(mass)QN-PAEK/rGO | rGO | QN-PAEK | 1.57 | 115@90℃ | 75@30℃ | 29.0 | [ |
QPVA/0.1%Fe3O4-GO with magnetic | Fe3O4-GO | QPVA | — | 54.4@60℃ | — | 40.0 | [ |
QTNT/QPSU | QTNT | QPSU | 1.73 | 19.5@RT | 16.2@RT | 40.0 | [ |
QPSF/5% LDH | LDH | QPSF | — | 23.6@RT | 20.5@60℃ | 17.5 | [ |
PVA/DGBE-15/SiO2-3 | DGBE 和 SiO2 | PVA | 1.10 | 4.2@25℃ | 48.3@25℃ | 20.7 | [ |
QPSF/5%MMT-1 | 功能化蒙脱土 | QPSF | 1.21 | 47.3@95℃ | 102@95℃ | 26.7 | [ |
QPPO/6%palygorskite | 坡缕石 | QPPO | 1.07 | 21.5@80℃ | 37.4@20℃ | 28.0 | [ |
10%CQPVA-CL | 壳聚糖 | QPVA | 1.09 | 27@70℃ | — | — | [ |
QPPO/QCNC (2%) | 季铵化纤维素 | QPPO | 1.05 | 28@20℃ | 16.9@20℃ | 30.9 | [ |
表1 一些具有代表性的纳米复合膜综合性能
Table 1 Comprehensive properties of some nanocomposite membranes
样品 | 填料 | 基膜 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/ % | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
1.0%(mass)QN-PAEK/rGO | rGO | QN-PAEK | 1.57 | 115@90℃ | 75@30℃ | 29.0 | [ |
QPVA/0.1%Fe3O4-GO with magnetic | Fe3O4-GO | QPVA | — | 54.4@60℃ | — | 40.0 | [ |
QTNT/QPSU | QTNT | QPSU | 1.73 | 19.5@RT | 16.2@RT | 40.0 | [ |
QPSF/5% LDH | LDH | QPSF | — | 23.6@RT | 20.5@60℃ | 17.5 | [ |
PVA/DGBE-15/SiO2-3 | DGBE 和 SiO2 | PVA | 1.10 | 4.2@25℃ | 48.3@25℃ | 20.7 | [ |
QPSF/5%MMT-1 | 功能化蒙脱土 | QPSF | 1.21 | 47.3@95℃ | 102@95℃ | 26.7 | [ |
QPPO/6%palygorskite | 坡缕石 | QPPO | 1.07 | 21.5@80℃ | 37.4@20℃ | 28.0 | [ |
10%CQPVA-CL | 壳聚糖 | QPVA | 1.09 | 27@70℃ | — | — | [ |
QPPO/QCNC (2%) | 季铵化纤维素 | QPPO | 1.05 | 28@20℃ | 16.9@20℃ | 30.9 | [ |
样品 | 方法 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/% | 溶胀率/% | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
PSf–PDApip4 | 嵌段共聚 | 2.02 | 102@80℃ | 45.4@80℃ | — | 21.0 | [ |
NCBP-Im | 嵌段共聚 | 1.25 | 35.0@RT | 13.3@RT | 4.5@RT | 28.5 | [ |
PPO51-Im0.78F0.3 | 侧链接枝 | 1.16 | 15.9@30℃ | 12.5@30℃ | 3.0@30℃ | 24.1 | [ |
ImPEK-0.4 | 侧链接枝 | 1.68 | 83.6@80℃ | 17.9@80℃ | 7.9@80℃ | 69.6 | [ |
x(QH)3QPPO-40 | 侧链接枝 | 3.59 | 110@80℃ | — | 25@80℃ | 20.0 | [ |
M-OH-1∶1 | 侧链接枝 | 1.88 | 14.9@RT | 6.5@RT | 4.9 | 35.0 | [ |
PAEK-PIL0.8 | 侧链接枝 | 2.05 | 49.4@RT | 15.5@RT | 12.1 | 11.6 | [ |
PK-QD-54 | 侧链接枝 | 2.02 | 36.6@30℃ | 21.6@30℃ | 8.4@30℃ | 30.0 | [ |
表2 一些微相分离膜综合性能
Table 2 Comprehensive properties of microphase separation membranes
样品 | 方法 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/% | 溶胀率/% | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
PSf–PDApip4 | 嵌段共聚 | 2.02 | 102@80℃ | 45.4@80℃ | — | 21.0 | [ |
NCBP-Im | 嵌段共聚 | 1.25 | 35.0@RT | 13.3@RT | 4.5@RT | 28.5 | [ |
PPO51-Im0.78F0.3 | 侧链接枝 | 1.16 | 15.9@30℃ | 12.5@30℃ | 3.0@30℃ | 24.1 | [ |
ImPEK-0.4 | 侧链接枝 | 1.68 | 83.6@80℃ | 17.9@80℃ | 7.9@80℃ | 69.6 | [ |
x(QH)3QPPO-40 | 侧链接枝 | 3.59 | 110@80℃ | — | 25@80℃ | 20.0 | [ |
M-OH-1∶1 | 侧链接枝 | 1.88 | 14.9@RT | 6.5@RT | 4.9 | 35.0 | [ |
PAEK-PIL0.8 | 侧链接枝 | 2.05 | 49.4@RT | 15.5@RT | 12.1 | 11.6 | [ |
PK-QD-54 | 侧链接枝 | 2.02 | 36.6@30℃ | 21.6@30℃ | 8.4@30℃ | 30.0 | [ |
样品 | 非离子聚合物网络 | 离子聚合物网络 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/% | 溶胀度/% | 应力/MPa | 文献 |
---|---|---|---|---|---|---|---|---|
PBI/DAIm TIPN-65/0.5 | PBI | P[DAIm] | 0.63 | 96.7@80℃ | 23.0 | 4.4 | 48.2 | [ |
PVA/30%PPO | PVA | QPPO | 1.29 | 151@RT | 67.0 | 26.0 | 41 | [ |
SIPN-60-2 | xPEG-PAGE | QAPPO | 1.43 | 67.7@80℃ | 96.5 | 17.4 | 93.4 | [ |
VPPO/VBC(2.0)-IPN | PPO | PVBC | 1.82 | 69.7@90℃ | 1.2 | ~0 | >35 | [ |
sIPN-62/30 | PPO-N3 | CM-PS | 1.44 | 97.8@80℃ | 68.8 | 12.0 | 11.3 | [ |
pp-50 | PVA-GA | PVBC-c-PVIm | 1.86 | 21.9@30℃ | 39.4 | 28.6 | 36.7 | [ |
IPN64 | PVA-GA | QPSF | 1.13 | 18.2@60℃ | 30 | 12 | 12.7 | [ |
表3 互穿聚合物网络结构膜综合性能
Table 3 Comprehensive properties of interpenetrating polymer network membranes
样品 | 非离子聚合物网络 | 离子聚合物网络 | IEC/ (mmol·g-1) | 电导率/ (mS·cm-1) | 吸水率/% | 溶胀度/% | 应力/MPa | 文献 |
---|---|---|---|---|---|---|---|---|
PBI/DAIm TIPN-65/0.5 | PBI | P[DAIm] | 0.63 | 96.7@80℃ | 23.0 | 4.4 | 48.2 | [ |
PVA/30%PPO | PVA | QPPO | 1.29 | 151@RT | 67.0 | 26.0 | 41 | [ |
SIPN-60-2 | xPEG-PAGE | QAPPO | 1.43 | 67.7@80℃ | 96.5 | 17.4 | 93.4 | [ |
VPPO/VBC(2.0)-IPN | PPO | PVBC | 1.82 | 69.7@90℃ | 1.2 | ~0 | >35 | [ |
sIPN-62/30 | PPO-N3 | CM-PS | 1.44 | 97.8@80℃ | 68.8 | 12.0 | 11.3 | [ |
pp-50 | PVA-GA | PVBC-c-PVIm | 1.86 | 21.9@30℃ | 39.4 | 28.6 | 36.7 | [ |
IPN64 | PVA-GA | QPSF | 1.13 | 18.2@60℃ | 30 | 12 | 12.7 | [ |
样品 | IEC/ (mmol·g-1) | 离子簇/nm | 电导率/ (mS·cm-1) | 吸水率/ % | 溶胀度/ % | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
Di-DQP-OH | 2.45 | 2.00 | 46.8@30℃ | 49.5 | — | — | [ |
C-HPPES-4/1 | 1.83 | 16.03 | 143.4@80℃ | 31.7 | 11.3 | 39.7 | [ |
PQA-PPAEK | 2.17 | — | 11.1@20℃ | 9.3 | — | 17.9 | [ |
PAES-15-IMPPO | 2.55 | 15.00 | 78.8@80℃ | 119.6 | 28.0 | 36.0 | [ |
QBPES-60 | 1.93 | 8.26 | 40.5@60℃ | 42.6 | 7.8 | 26.4 | [ |
PI-ran-P[VBTMA][Cl] 2.15 | 1.42 | 5.20 | 19.6@60℃ | 67.3 | — | — | [ |
ImPESN-19-22 | 2.07 | 17.95 | 146.7@80℃ | 18.4 | 25.5 | 31.7 | [ |
QPSU-3%QPOSS | 1.65 | 20.00 | 53.6@80℃ | 61.8 | 23.0 | 36.6 | [ |
表4 具有离子簇结构AEM的综合性能
Table 4 Comprehensive properties of AEMs with ion clusters
样品 | IEC/ (mmol·g-1) | 离子簇/nm | 电导率/ (mS·cm-1) | 吸水率/ % | 溶胀度/ % | 应力/ MPa | 文献 |
---|---|---|---|---|---|---|---|
Di-DQP-OH | 2.45 | 2.00 | 46.8@30℃ | 49.5 | — | — | [ |
C-HPPES-4/1 | 1.83 | 16.03 | 143.4@80℃ | 31.7 | 11.3 | 39.7 | [ |
PQA-PPAEK | 2.17 | — | 11.1@20℃ | 9.3 | — | 17.9 | [ |
PAES-15-IMPPO | 2.55 | 15.00 | 78.8@80℃ | 119.6 | 28.0 | 36.0 | [ |
QBPES-60 | 1.93 | 8.26 | 40.5@60℃ | 42.6 | 7.8 | 26.4 | [ |
PI-ran-P[VBTMA][Cl] 2.15 | 1.42 | 5.20 | 19.6@60℃ | 67.3 | — | — | [ |
ImPESN-19-22 | 2.07 | 17.95 | 146.7@80℃ | 18.4 | 25.5 | 31.7 | [ |
QPSU-3%QPOSS | 1.65 | 20.00 | 53.6@80℃ | 61.8 | 23.0 | 36.6 | [ |
1 | AssemY, GreinerA, AgarwalS. Microwave-assisted controlled ring-closing cyclopolymerization of diallyldimethylammonium chloride via the RAFT process[J]. Macromolecular Rapid Communications, 2007, 28(18/19): 1923-1928. |
2 | AsazawaK, YamadaK, TanakaH, et al. A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles[J]. Angew. Chem. Int. Ed. Engl., 2007, 46(42): 8024-8027. |
3 | DebeM K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
4 | ChenC, PanJ, HanJ, et al. Varying the microphase separation patterns of alkaline polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(11): 4071-4081. |
5 | ChenD, HicknerM A. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes[J]. ACS Appl. Mater. Interfaces, 2012, 4(11): 5775-5781. |
6 | GuS, CaiR, YanY. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes[J]. Chem. Commun. (Camb), 2011, 47(10): 2856-2858. |
7 | JungM S J, ArgesC G, RamaniV. A perfluorinated anion exchange membrane with a 1,4-dimethylpiperazinium cation[J]. Journal of Materials Chemistry, 2011, 21(17): 6158. |
8 | FengT, LinB, ZhangS, et al. Imidazolium-based organic-inorganic hybrid anion exchange membranes for fuel cell applications[J]. Journal of Membrane Science, 2016, 508: 7-14. |
9 | FujimotoC, KimD S, HibbsM, et al. Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells[J]. Journal of Membrane Science, 2012, 423/424: 438-449. |
10 | GuS, CaiR, LuoT, et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J]. Angew. Chem. Int. Ed. Engl., 2009, 48(35): 6499-6502. |
11 | HanJ, LiuQ, LiX, et al. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes[J]. ACS Appl. Mater. Interfaces, 2015, 7(4): 2809-2816. |
12 | LiN, YanT, LiZ, et al. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes[J]. Energy & Environmental Science, 2012, 5(7): 7888. |
13 | PanJ, LuS, LiY, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced Functional Materials, 2010, 20(2): 312-319. |
14 | RobertsonN J, KostalikH A, ClarkT J, et al. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications[J]. Journal of the American Chemical Society, 2010, 132(10): 3400-3404. |
15 | ZhaoY, YuH, YangD, et al. High-performance alkaline fuel cells using crosslinked composite anion exchange membrane[J]. Journal of Power Sources, 2013, 221: 247-251. |
16 | ChuJ Y, LeeK H, KimA R, et al. Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes[J]. Composites Part B: Engineering, 2019, 164: 324-332. |
17 | DasG, DonghoK, KimC Y, et al. Graphene oxide crosslinked poly(phenylene oxide) nanocomposite as high-performance anion-conducting membrane[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 380-389. |
18 | LinJ S, KumarS R, MaW T, et al. Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density[J]. Journal of Membrane Science, 2017, 543: 28-39. |
19 | LiuJ, QuR, PengP, et al. Covalently functionalized graphene oxide and quaternized polysulfone nanocomposite membranes for fuel cells[J]. RSC Advances, 2016, 6(75): 71305-71310. |
20 | MaoX, LiZ, HeG, et al. Enhancing hydroxide conductivity of anion exchange membrane via incorporating densely imidazolium functionalized graphene oxide[J]. Solid State Ionics, 2019, 333: 83-92. |
21 | MoZ H, YangR, HongS, et al. In-situ preparation of cross-linked hybrid anion exchange membrane of quaternized poly (styrene-b-isobutylene-b-styrene) covalently bonded with graphene[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1790-1804. |
22 | MsomiP F, NonjolaP, NdunguP G, et al. Quaternized poly (2,6-dimethyl-1,4-phenylene oxide)/polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application[J]. Journal of Polymer Research, 2018, 25(6):143. |
23 | OuadahA, LuoT, WangJ, et al. Imidazolium-grafted graphene oxide via free radical polymerization: an efficient and simple method for an interpenetrating polymer network as electrolyte membrane[J]. Composites Science and Technology, 2018, 164: 204-213. |
24 | WangC, LinB, QiaoG, et al. Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells[J]. Materials Letters, 2016, 173: 219-222. |
25 | YangQ, LinC X, LiuF H, et al. Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells[J]. Journal of Membrane Science, 2018, 552: 367-376. |
26 | YeY S, ChengM Y, XieX L, et al. Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells[J]. Journal of Power Sources, 2013, 239: 424-432. |
27 | ElumalaiV, SangeethaD. Preparation of anion exchangeable titanate nanotubes and their effect on anion exchange membrane fuel cell[J]. Materials & Design, 2018, 154: 63-72. |
28 | ElumalaiV, SangeethaD. Synergic effect of ionic liquid grafted titanate nanotubes on the performance of anion exchange membrane fuel cell[J]. Journal of Power Sources, 2019, 412: 586-596. |
29 | MolyP P, JeenaC B, ElsaP J, et al. High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries[J]. Polymer Bulletin, 2018, 75(10): 4409-4428. |
30 | HeX, CaoL, HeG, et al. A highly conductive and robust anion conductor obtained via synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(22): 10277-10285. |
31 | LiuW, LiangN, PengP, et al. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells[J]. Journal of Solid State Chemistry, 2017, 246: 324-328. |
32 | ZhuH, LiR, ChenN, et al. Electrorheological effect induced quaternized poly(2,6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells[J]. RSC Advances, 2016, 6(88): 85486-85494. |
33 | LiangN, TuY, XuJ, et al. Hybrid anion exchange membranes with self-assembled ionic channels[J]. Advances in Polymer Technology, 2018, 37(6): 1732-1736. |
34 | LiZ, ZhangY, CaoT, et al. Highly conductive alkaline anion exchange membrane containing imidazolium-functionalized octaphenyl polyhedral oligomeric silsesquioxane filler[J]. Journal of Membrane Science, 2017, 541: 474-482. |
35 | MoghadasiM, MortahebH R. Incorporating functionalized silica nanoparticles in polyethersulfone-based anion exchange nanocomposite membranes[J]. Journal of Applied Polymer Science, 2016,134:44596. |
36 | DasG, DekaB K, LeeS H, et al. Poly(vinyl alcohol)/silica nanoparticles based anion-conducting nanocomposite membrane for fuel-cell applications[J]. Macromolecular Research, 2015, 23(3): 256-264. |
37 | LeungP K, XuQ, ZhaoT S, et al. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries[J]. Electrochimica Acta, 2013, 105: 584-592. |
38 | YangC C, ChiuS S, KuoS C, et al. Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells[J]. Journal of Power Sources, 2012, 199: 37-45. |
39 | YangC C, LinY T. Preparation of a novel composite membrane and PtRu/hollow carbon sphere (HCS) anode catalyst for alkaline direct methanol fuel cell (ADMFC)[J]. Energy Procedia, 2014, 61: 1410-1416. |
40 | LuoZ, GongY, LiaoX, et al. Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells[J]. RSC Advances, 2016, 6(17): 13618-13625. |
41 | LuoJ, LiuC, SongY, et al. QPPO/palygorskite nanocomposite as an anion exchange membrane for alkaline fuel cell[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64(16): 831-837. |
42 | LiP C, LiaoG M, KumarS R, et al. Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells[J]. Electrochimica Acta, 2016, 187: 616-628. |
43 | ChengX, WangJ, LiaoY, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
44 | PanJ, ChenC, LiY, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360. |
45 | StrasserD J, GrazianoB J, KnaussD M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(20): 9627-9640. |
46 | VandiverM A, CaireB R, PoskinZ, et al. Durability and performance of polystyrene-b-poly (vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes[J]. Journal of Applied Polymer Science, 2015, 132(10): 41596. |
47 | ZhangK, GongS, ZhaoB, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71. |
48 | ZhangX, ChenP, ShiQ, et al. Block poly(arylene ether sulfone) copolymers bearing quaterinized aromatic pendants: synthesis, property and stability[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26320-26332. |
49 | ZhangX, ShiQ, ChenP, et al. Block poly(arylene ether sulfone) copolymers tethering aromatic side-chain quaternary ammonium as anion exchange membranes[J]. Polymer Chemistry, 2018, 9(6): 699-711. |
50 | WeiH, LiY, WangS, et al. Side-chain-type imidazolium-functionalized anion exchange membranes: the effects of additional hydrophobic side chains and their hydrophobicity[J]. Journal of Membrane Science, 2019, 579: 219-229. |
51 | JastiA, ShahiV K. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells[J]. Journal of Power Sources, 2014, 267: 714-722. |
52 | TsaiT H, MaesA M, VandiverM A, et al. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(24): 1751-1760. |
53 | DongX, LvD, ZhengJ, et al. Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: using densely concentrated ionic groups and block design to improve membrane performance[J]. Journal of Membrane Science, 2017, 535: 301-311. |
54 | DuX, WangZ, LiuW, et al. Imidazolium-functionalized poly (arylene ether ketone) cross-linked anion exchange membranes[J]. Journal of Membrane Science, 2018, 566: 205-212. |
55 | HanJ, ZhuL, PanJ, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
56 | HaoJ, GaoX, JiangY, et al. Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)[J]. Journal of Membrane Science, 2018, 551: 66-75. |
57 | HaoJ, JiangY, GaoX, et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10. |
58 | HeY, PanJ, WuL, et al. A novel methodology to synthesize highly conductive anion exchange membranes[J]. Sci. Rep., 2015, 5: 13417. |
59 | LaiA N, ZhuoY Z, LinC X, et al. Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells[J]. Journal of Membrane Science, 2016, 502: 94-105. |
60 | LiJ, WangS, LiuF, et al. Poly (aryl ether ketone)/polymeric ionic liquid with anisotropic swelling behavior for anion exchange membranes[J]. Journal of Membrane Science, 2019, 581: 303-311. |
61 | LiL, YangQ, GaoX L, et al. Facile construction of crosslinked all-carbon-backbone anion-exchange membranes with robust durability[J]. Journal of Materials Chemistry A, 2018, 6(48): 24831-24840. |
62 | MondalA N, HeY, WuL, et al. Click mediated high-performance anion exchange membranes with improved water uptake[J]. Journal of Materials Chemistry A, 2017, 5(3): 1022-1027. |
63 | PanJ, HanJ, ZhuL, et al. Cationic side-chain attachment to poly(phenylene oxide) backbones for chemically stable and conductive anion exchange membranes[J]. Chemistry of Materials, 2017, 29(12): 5321-5330. |
64 | RanJ, FuC, DingL, et al. Dual hydrophobic grafted chains facilitating quaternary ammonium aggregations of hydroxide conducting polymers: a theoretical and experimental investigation[J]. Journal of Materials Chemistry A, 2018, 6(14): 5714-5723. |
65 | ShuklaG, ShahiV K. The improved ion clustering and conductivity of a di-quaternized poly(arylene ether ketone sulfone)-based alkaline fuel cell membrane[J]. Sustainable Energy & Fuels, 2017, 1(4): 932-940. |
66 | ShuklaG, ShahiV K. Poly(arylene ether ketone) copolymer grafted with amine groups containing a long alkyl chain by chloroacetylation for improved alkaline stability and conductivity of anion exchange membrane[J]. ACS Applied Energy Materials, 2018, 1(3): 1175-1182. |
67 | WangZ, LiZ, ChenN, et al. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications[J]. Journal of Membrane Science, 2018, 564: 492-500. |
68 | YangC, LiuL, HanX, et al. Highly anion conductive, alkyl-chain-grafted copolymers as anion exchange membranes for operable alkaline H2/O2 fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(21): 10301-10310. |
69 | ZengL, ZhaoT S. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains[J]. Journal of Power Sources, 2016, 303: 354-362. |
70 | ZhangM, ShanC, LiuL, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Appl. Mater. Interfaces, 2016, 8(35): 23321-23330. |
71 | ZhuL, ZimudziT J, LiN, et al. Crosslinking of comb-shaped polymer anion exchange membranes via thiol-ene click chemistry[J]. Polymer Chemistry, 2016, 7(14): 2464-2475. |
72 | ZhuM, ZhangX, SuY, et al. Comb-shaped diblock copolystyrene for anion exchange membranes[J]. Journal of Applied Polymer Science, 2019, 136(15): 47370. |
73 | JiangL, LinX, RanJ, et al. Synthesis and properties of quaternary phosphonium-based anion exchange membrane for fuel cells[J]. Chinese Journal of Chemistry, 2012, 30(9): 2241-2246. |
74 | WuX, ChenW, YanX, et al. Enhancement of hydroxide conductivity by the di-quaternization strategy for poly(ether ether ketone) based anion exchange membranes[J]. Journal of Materials Chemistry A, 2014, 2(31): 12222. |
75 | HanJ, PanJ, ChenC, et al. Effect of micromorphology on alkaline polymer electrolyte stability[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 469-477. |
76 | LinJ, YanX, HeG, et al. Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly(1,2-dimethy-3-allylimidazolium) for anion exchange membranes[J]. Electrochimica Acta, 2017, 257: 9-19. |
77 | PanJ, ZhuL, HanJ, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698. |
78 | YangZ, HouJ, WangX, et al. Highly water resistant anion exchange membrane for fuel cells[J]. Macromol. Rapid Commun., 2015, 36(14): 1362-1367. |
79 | ZhangK, McdonaldM B, GeninaI E A, et al. A highly conductive and mechanically robust OH– conducting membrane for alkaline water electrolysis[J]. Chemistry of Materials, 2018, 30(18): 6420-6430. |
80 | ChoiY J, SongJ H, KangM S, et al. Preparation and electrochemical characterizations of anion-permselective membranes with structurally stable ion-exchange sites[J]. Electrochimica Acta, 2015, 180: 71-77. |
81 | WangY, WanH, WangD, et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane[J]. Fibers and Polymers, 2018, 19(1): 11-21. |
82 | XueJ, LiuL, LiaoJ, et al. Semi-interpenetrating polymer networks by azide-alkyne cycloaddition as novel anion exchange membranes[J]. Journal of Materials Chemistry A, 2018, 6(24): 11317-11326. |
83 | WangJ, HeR, CheQ. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene[J]. J. Colloid Interface Sci., 2011, 361(1): 219-225. |
84 | HanB, PanJ, YangS, et al. Novel composite anion exchange membranes based on quaternized polyepichlorohydrin for electromembrane application[J]. Industrial & Engineering Chemistry Research, 2016, 55(26): 7171-7178. |
85 | ZengL, ZhaoT S, WeiL, et al. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 327: 374-383. |
86 | HigaM, KobayashiM, KakihanaY, et al. Charge mosaic membranes with semi-interpenetrating network structures prepared from a polymer blend of poly(vinyl alcohol) and polyelectrolytes[J]. Journal of Membrane Science, 2013, 428: 267-274. |
87 | GuoD, ZhuoY Z, LaiA N, et al. Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells[J]. Journal of Membrane Science, 2016, 518: 295-304. |
88 | ZuoD, GongY, YanQ, et al. Preparation and characterization of hydroxyl ion-conducting interpenetrating polymer network based on PVA and PEI[J]. Journal of Polymer Research, 2016, 23(7):126. |
89 | GongY, LiaoX, XuJ, et al. Novel anion-conducting interpenetrating polymer network of quaternized polysulfone and poly(vinyl alcohol) for alkaline fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(13): 5816-5823. |
90 | WangJ, HeR. Formation and evaluation of interpenetrating networks of anion exchange membranes based on quaternized chitosan and copolymer poly(acrylamide)/polystyrene[J]. Solid State Ionics, 2015, 278: 49-57. |
91 | LeeN, DuongD T, KimD. Cyclic ammonium grafted poly(arylene ether ketone) hydroxide ion exchange membranes for alkaline water electrolysis with high chemical stability and cell efficiency[J]. Electrochimica Acta, 2018, 271: 150-157. |
92 | ChenD, HicknerM A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s[J]. Macromolecules, 2013, 46(23): 9270-9278. |
93 | LeeK H, ChoD H, KimY M, et al. Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking[J]. Energy & Environmental Science, 2017, 10(1): 275-285. |
94 | LaiA N, GuoD, LinC X, et al. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells[J]. Journal of Power Sources, 2016, 327: 56-66. |
95 | LaiA N, WangL S, LinC X, et al. Phenolphthalein-based poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes for alkaline fuel cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(15): 8284-8292. |
96 | LinC X, ZhuoY Z, LaiA N, et al. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells[J]. Journal of Membrane Science, 2016, 513: 206-216. |
97 | DongX, HouS, MaoH, et al. Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes[J]. Journal of Membrane Science, 2016, 518: 31-39. |
98 | ErtemS P, TsaiT H, DonahueM M, et al. Photo-cross-linked anion exchange membranes with improved water management and conductivity[J]. Macromolecules, 2015, 49(1): 153-161. |
99 | ZhangW, QiuX, UedaM, et al. Synthesis and properties of poly(phenylene-co-arylene ether ketone)s with five quaternary ammonium groups on a phenyl unit for anion-exchange membranes[J]. Solid State Ionics, 2018, 314: 187-194. |
100 | NykazaJ R, YeY, NelsonR L, et al. Polymerized ionic liquid diblock copolymers: impact of water/ion clustering on ion conductivity[J]. Soft Matter, 2016, 12(4): 1133-1144. |
101 | MiaoL, WangX, FuY, et al. Quaternized polyhedral oligomeric silsesquioxanes (QPOSS) modified polysulfone-based composite anion exchange membranes[J]. Solid State Ionics, 2017, 309: 170-179. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[15] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||