化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3663-3676.DOI: 10.11949/0438-1157.20190614
收稿日期:
2019-06-02
修回日期:
2019-09-22
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
初广文
作者简介:
刘易(1991—),男,博士后,基金资助:
Yi LIU(),Wei WU,Yong LUO,Guangwen CHU(),Haikui ZOU,Jianfeng CHEN
Received:
2019-06-02
Revised:
2019-09-22
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guangwen CHU
摘要:
旋转填充床反应器是一种典型过程强化装置,对化工过程中的传质与混合过程具有较好的强化作用。流体流动作为旋转填充床反应器中最为基础的性质,对研究、优化旋转填充床反应器的结构和性能至关重要。光学成像技术与数值模拟作为研究旋转填充床反应器中流体力学性质的重要手段在近年来得到了飞速发展。对近三十年来,旋转填充床反应器可视化研究进行了综述,从早期光学成像开始,在此基础上引入早期计算流体力学模拟,直至现在高速数码摄像可视化和基于真实结构的模拟。对旋转填充床的可视化观测从填料表面逐渐向填料内部发展,对其数值模拟从初步的数学模型发展到包含详细填料几何结构、详细流体特性的流动模拟。现有研究已对填料区、空腔区中的流体流动有了较为详细的描述。
中图分类号:
刘易, 武威, 罗勇, 初广文, 邹海魁, 陈建峰. 旋转填充床反应器流体流动可视化研究进展[J]. 化工学报, 2019, 70(10): 3663-3676.
Yi LIU, Wei WU, Yong LUO, Guangwen CHU, Haikui ZOU, Jianfeng CHEN. Visual study of fluid flow in rotating packed bed reactors: a review[J]. CIESC Journal, 2019, 70(10): 3663-3676.
图2 旋转填充床反应器反应器纵截面(a),旋转填充床反应器中三种典型流型(b),转速400 r/min(c)、900 r/min(d)和1200 r/min(e)条件下液体分布状况[24]
Fig.2 Cross section of RPB (a), three types of liquid flow within RPB (b),and liquid distribution on 400 r/min (c), 900 r/min (d), 1200 r/min(e)[24]
图3 R-S波纹丝网填料(a)和泡沫镍填料(b)表面的流体流动状况;同步摄像实验装置(c)和典型实时图像(左图为湿填料,右图为干填料)(d)[26]
Fig.3 Liquid flow on surface of R-S wire mesh packing (a) and nickel foam packing (b), experimental setup (c) and typical photos (left: wet packing, right: dry packing) (d)[26]
图10 旋转填充床反应器空腔区中典型流形、液体分布状况、拍摄区域及液体运动状况示意图[35,36]
Fig.10 Typical liquid flow pattern of droplet and ligament,liquid distribution, typical images of droplet motion and schematic diagram of droplet motion in cavity zone[35,36]
图20 X射线测定旋转填充床反应器持液量实验装置、R-S波纹丝网填料、泡沫镍填料持液量[45]
Fig.20 Experimental setup and liquid hold up of R-S wire mesh packing,nickel foam packing for RPB reactor via X-ray CT[45]
1 | LiuY, LuoY, ChuG W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377. |
2 | LiuH S, LinC C, WuS C, et al. Characteristics of a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3590-3596. |
3 | RaoD P, BhowalA, GoswamiP S. Process intensification in rotating packed beds (HIGEE): an appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162. |
4 | YangH J, ChuG W, ZhangJ W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. |
5 | LuoY, ChuG W, ZouH K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325. |
6 | WenzelD, GórakA. Review and analysis of micromixing in rotating packed beds[J]. Chemical Engineering Journal, 2018, 345: 492-506. |
7 | OkoE, RamshawC, WangM. Study of absorber intercooling in solvent-based CO2 capture based on rotating packed bed technology[J]. Energy Procedia, 2017, 142: 3511-3516. |
8 | SunB, ShengM, GaoW, et al. Absorption of nitrogen oxides into sodium hydroxide solution in a rotating packed bed with preoxidation by ozone[J]. Energy & Fuels, 2017, 31(10): 11019-11025. |
9 | ZhangL, WuS, LiangZ, et al. Hydrogen sulfide removal by catalytic oxidative absorption method using rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2017, 25(2): 175-179. |
10 | ZouH, ShengM, SunX, et al. Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed[J]. Fuel, 2017, 204: 47-53. |
11 | ZhangL, WuS, GaoY, et al. Absorption of SO2 with calcium-based solution in a rotating packed bed[J]. Separation and Purification Technology, 2019, 214: 148-155. |
12 | SunB, ZhangL, WengZ, et al. Sulfonation of alkylbenzene using liquid sulfonating agent in rotating packed bed: experimental and numerical study[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 93-100. |
13 | PourakbarM, MoussaviG, YaghmaeianK. Enhanced biodegradation of phenol in a novel cyclic activated sludge integrated with a rotating bed bioreactor in anoxic and peroxidase-mediated conditions[J]. RSC Advances, 2018, 8(12): 6293-6305. |
14 | ZhangD, ZhangP Y, ZouH K, et al. Application of HIGEE process intensification technology in synthesis of petroleum sulfonate surfactant[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 508-513. |
15 | ZhaoY, ArowoM, WuW, et al. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 280-287. |
16 | ZengX F, HanX W, ChenB, et al. Facile synthesis of Mg(OH)2/graphene oxide composite by high-gravity technology for removal of dyes[J]. Journal of Materials Science, 2018, 53(4): 2511-2519. |
17 | WangZ Y, PuY, WangD, et al. 3D foam structured nitrogen doped graphene‐Ni catalyst for highly efficient nitrobenzene reduction[J]. AIChE Journal, 2018, 64(4): 1330-1338. |
18 | LinC C, LinC C. Feasibility of using a rotating packed bed with blade packings to produce ZnO nanoparticles[J]. Powder Technology, 2017, 313: 60-67. |
19 | KangF, WangD, PuY, et al. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411. |
20 | MoslehS, RahimiM R, GhaediM, et al. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization[J]. Ultrasonics Sonochemistry, 2018, 40: 601-610. |
21 | GarciaG C, van der SchaafJ, KissAA. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
22 | LiW, SongB, LiX, et al. Modelling of vacuum distillation in a rotating packed bed by Aspen[J]. Applied Thermal Engineering, 2017, 117: 322-329. |
23 | YangX, LengJ, WangD, et al. Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries[J]. Chemical Engineering and Processing: Process Intensification, 2017, 120: 201-206. |
24 | BurnsJ R, RamshawC. Process intensification: visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science, 1996, 51(8): 1347-1352. |
25 | 张军. 旋转床内液体流动与传质的实验研究和计算模拟[D]. 北京: 北京化工大学, 1996. |
ZhangJ. The experimental study and simulation of liquid flow in rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 1996. | |
26 | GuoK, GuoF, FengY, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55(9): 1699-1706. |
27 | XuM, ZhangJ, ChenJ, et al. CFD Modeling of gas-liquid flow and masstransfer in rotating packed beds[C]//World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress on Computational Mechanics. 2004. |
28 | Llerena-ChavezH, LarachiF. Analysis of flow in rotating packed beds via CFD simulations—dry pressure drop and gas flow maldistribution[J]. Chemical Engineering Science, 2009, 64(9): 2113-2126. |
29 | 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726-2732. |
ZhangJ W, LiY C, ChengJ F. Characteristics of micromixing and reaction in a rotating bed[J]. CIESC Journal, 2011, 62(10): 2726-2732. | |
30 | YangW, WangY, ChenJ, et al. Computational fluid dynamic simulation of fluid flow in a rotating packed bed[J]. Chemical Engineering Journal, 2010, 156(3): 582-587. |
31 | MartínezE L, JaimesR, GomezJ L, et al. CFD simulation of three-dimensional multiphase flow in a rotating packed bed[J]. Computer Aided Chemical Engineering, 2012, 30: 1158-1162. |
32 | ShiX, XiangY, WenL X, et al. CFD analysis of liquid phase flow in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2013, 228: 1040-1049. |
33 | 杨旷, 初广文, 邹海魁,等. 旋转床内流体微观流动PIV研究[J]. 北京化工大学学报(自然科学版), 2011, 38(2): 7-11. |
YangK, ChuG W, ZouH K, et al. Visualization of micro-fluid flow in a rotating packed bed using particle image velocimetry method[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2011, 38(2): 7-11. | |
34 | 孙润林, 向阳, 杨宇成, 等. 超重力旋转床液体流动的可视化研究[J].高校化学工程学报, 2013, 27(3): 411-416. |
SunR L, XiangY, YangY C, et al. A visual study of liquid flow in a rotating packing bed with super gravity[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 411-416. | |
35 | SangL, LuoY, ChuG W, et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed[J]. Chemical Engineering Science, 2017, 170: 355-364. |
36 | SangL, LuoY, ChuG W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438. |
37 | XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
38 | GuoT Y, ChengK P, WenL X, et al. Three-dimensional simulation on liquid flow in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8169-8179. |
39 | OuyangY, ZouH K, GaoX Y, et al. Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed[J]. Chemical Engineering and Processing-Process Intensification, 2018, 123: 185-194. |
40 | WuW, LuoY, ChuG W, et al. Gas flow in a multiliquid-inlet rotating packed bed: three-dimensional numerical simulation and internal optimization[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2031-2040. |
41 | XieP, LuX, DingH, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
42 | LuX, XieP, InghamD B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134. |
43 | XieP, LuX, YangX, et al. Characteristics of liquid flow in a rotating packed bed for CO2 capture: a CFD analysis[J]. Chemical Engineering Science, 2017, 172: 216-229. |
44 | LiuY, LuoY, ChuG W, et al. Liquid microflow inside the packing of a rotating packed bed reactor: computational, observational and experimental studies[J]. Chemical Engineering Journal, . |
45 | YangY, XiangY, ChuG, et al. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed[J]. Chemical Engineering Science, 2015, 138: 244-255. |
46 | LiuY, WuW, LuoY, et al. CFD Simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
47 | WuW, LuoY, ChuG W, et al. Liquid flow behavior in a multiliquid-inlet rotating packed bed reactor with three-dimensional printed packing[J]. Chemical Engineering Journal, . |
48 | GaoX Y, ChuG W, OuyangY, et al. Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14350-14361. |
49 | YangY, XiangY, ChuG, et al. CFD modeling of gas-liquid mass transfer process in a rotating packed bed[J]. Chemical Engineering Journal, 2016, 294: 111-121. |
50 | GuoT Y, ShiX, ChuG W, et al. Computational fluid dynamics analysis of the micromixing efficiency in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4856-4866. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[10] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[11] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[12] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[13] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[14] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[15] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||