1 |
Calabrese G S , Pissavini S . From batch to continuous flow processing in chemicals manufacturing[J]. AIChE Journal, 2011, 57(4): 828-834.
|
2 |
Kashid M N , Kiwi-Minsker L . Microstructured reactors for multiphase reactions: state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6465-6485.
|
3 |
Hartman R L , Jensen K F . Microchemical systems for continuous-flow synthesis[J]. Lab Chip, 2009, 9(17): 2495-507.
|
4 |
Tostado C P , Xu J , Luo G . The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device[J]. Chemical Engineering Journal, 2011, 171(3): 1340-1347.
|
5 |
Utada A S , Fernandez-Nieves A , Stone H A , et al . Dripping to jetting transitions in coflowing liquid streams[J]. Phys. Rev. Lett., 2007, 99(9): 094502.
|
6 |
Xu J H , Li S W , Tan J , et al . Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010.
|
7 |
Guillot P , Colin A , Utada A S , et al . Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers[J]. Phys. Rev. Lett., 2007, 99(10): 104502.
|
8 |
Anna S L , Bontoux N , Stone H A . Formation of dispersions using “flow focusing” in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366.
|
9 |
Xu J H , Li S W , Chen G G , et al . Formation of monodisperse microbubbles in a microfluidic device[J]. AIChE Journal, 2006, 52(6): 2254-2259.
|
10 |
Cramer C , Fischer P , Windhab E J . Drop formation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058.
|
11 |
Xiong R , Chung J N . Bubble generation and transport in a microfluidic device with high aspect ratio[J]. Experimental Thermal and Fluid Science, 2009, 33(8): 1156-1162.
|
12 |
Ganan-Calvo A M , Gordillo J M . Perfectly monodisperse microbubbling by capillary flow focusing[J]. Phys. Rev. Lett., 2001, 87(27 Pt 1): 274501.
|
13 |
De Menech M , Garstecki P , Jousse F , et al . Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141-161.
|
14 |
Fu T , Ma Y . Bubble formation and breakup dynamics in microfluidic devices: a review[J]. Chemical Engineering Science, 2015, 135: 343-372.
|
15 |
Salman W , Gavriilidis A , Angeli P . On the formation of Taylor bubbles in small tubes[J]. Chemical Engineering Science, 2006, 61(20): 6653-6666.
|
16 |
Tan J , Li S W , Wang K , et al . Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433.
|
17 |
Vansteene A , Jasmin J P , Cavadias S , et al . Towards chip prototyping: a model for droplet formation at both T and X-junctions in dripping regime[J]. Microfluidics and Nanofluidics, 2018, 22(6): 61.
|
18 |
Yoon D H , Tanaka D , Sekiguchi T , et al . Structural formation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) droplets in PDMS device using protrusion channel without hydrophilic surface treatment[J]. Micromachines (Basel), 2018, 9(9): 468.
|
19 |
Gordillo J M , Cheng Z D , Ganan-Calvo A M , et al . A new device for the generation of microbubbles[J]. Physics of Fluids, 2004, 16(8): 2828-2834.
|
20 |
Li Y , Wang K , Luo G . Microdroplet generation with dilute surfactant concentration in a modified T-junction device[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12131-12138.
|
21 |
兰文杰, 李少伟, 徐建鸿, 等 . 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483.
|
|
Lan W J , Li S W , Xu J H , et al . Liquid-liquid two-phase viscous flow in coaxial microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483.
|
22 |
Li Y K , Liu G T , Xu J H , et al . A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364.
|
23 |
Castro-Hernández E , Gundabala V , Fernández-Nieves A , et al . Scaling the drop size in coflow experiments[J]. New Journal of Physics, 2009, 11(7), 075021.
|
24 |
Li Y K , Wang K , Xu J H , et al . A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188.
|
25 |
Castro-Hernandez E , van Hoeve W , Lohse D , et al . Microbubble generation in a co-flow device operated in a new regime[J]. Lab Chip, 2011, 11(12): 2023.
|
26 |
Shih R , Bardin D , Martz T D , et al . Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications[J]. Lab Chip, 2013, 13(24): 4816.
|
27 |
Xu J H , Li S W , Wang Y J , et al . Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device[J]. Applied Physics Letters, 2006, 88(13): 133506.
|
28 |
Qin K , Wang K , Luo R , et al . Dispersion of supercritical carbon dioxide to [Emim][BF4] with a T-junction tubing connector[J]. Chemical Engineering and Processing - Process Intensification, 2018, 127: 58-64.
|
29 |
Garstecki P , Fuerstman M J , Stone H A , et al . Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab Chip, 2006, 6(3): 437.
|
30 |
Garstecki P , Stone H A , Whitesides G M . Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions[J]. Phys. Rev. Lett., 2005, 94(16): 164501.
|
31 |
Herrada M A , Ganan-Calvo A M , Montanero J M . Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2013, 88(3): 033027.
|