化工学报 ›› 2020, Vol. 71 ›› Issue (1): 34-42.DOI: 10.11949/0438-1157.20191227
陆小华1(),陈义峰1,董依慧1,吉晓燕2,谢文龙1,吴楠桦1,安蓉3,戴中洋1,李峥1
收稿日期:
2019-10-23
修回日期:
2019-11-23
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
陆小华
作者简介:
陆小华(1959—),男,博士,教授,基金资助:
Xiaohua LU1(),Yifeng CHEN1,Yihui DONG1,Xiaoyan JI2,Wenlong XIE1,Nanhua WU1,Rong AN3,Zhongyang DAI1,Zheng LI1
Received:
2019-10-23
Revised:
2019-11-23
Online:
2020-01-05
Published:
2020-01-05
Contact:
Xiaohua LU
摘要:
CO2捕集与分离是解决当前全球温室效应和发展可再生能源的关键步骤,传统CO2分离及过程强化方法存在速率与效率的博弈。纳微界面强化广泛用于多相传递的化工过程,其对CO2传递过程的影响也比较显著。本综述从纳微界面处CO2传递模型的建立及阻力调控、纳微界面处CO2平衡态化学位的获取(推动力调控)以及界面强化机制的分子模拟分析等三个方面进行阐述。基于上述结果进一步分析真实吸收塔分离CO2过程的阻力调控并提出“三段式强化方案”,以优化CO2分离过程的投资与运行成本。
中图分类号:
陆小华, 陈义峰, 董依慧, 吉晓燕, 谢文龙, 吴楠桦, 安蓉, 戴中洋, 李峥. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42.
Xiaohua LU, Yifeng CHEN, Yihui DONG, Xiaoyan JI, Wenlong XIE, Nanhua WU, Rong AN, Zhongyang DAI, Zheng LI. Nano-interface enhanced CO2 absorption and mechanism analysis[J]. CIESC Journal, 2020, 71(1): 34-42.
1 | International Energy Agency. Global Energy & CO2 Status Report[R]. 2018. |
2 | U.S. Energy Information Administration Office of Energy Analysis. International Energy Outlook[R]. Washington, DC: U.S. Department of Energy, 2018. |
3 | Orr F M. CO2 capture and storage: are we ready?[J]. Energy & Environmental Science, 2009, 2(5): 449-458. |
4 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
5 | Abatzoglou N, Boivin S. A review of biogas purification processes[J]. Biofuels, Bioproducts and Biorefining, 2009, 3(1): 42-71. |
6 | Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology—the US department of energy s carbon sequestration program[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 9-20. |
7 | Rayer A V, Henni A, Tontiwachwuthikul P. High pressure physical solubility of carbon dioxide (CO2) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753)[J]. The Canadian Journal of Chemical Engineering, 2012, 90(3): 576-583. |
8 | Weiss H. Rectisol wash for purification of partial oxidation gases[J]. Gas Separation & Purification, 1988, 2(4): 171-176. |
9 | Chen X, Rochelle G T. Thermodynamics of CO2/2-methylpiperazine/water[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4229-4238. |
10 | Wang M, Lawal A, Stephenson P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
11 | Angelidaki I, Treu L, Tsapekos P, et al. Biogas upgrading and utilization: current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-456. |
12 | Cozma P, Ghinea C, Mamaliga I, et al. Environmental impact assessment of high pressure water scrubbing biogas upgrading technology[J]. Clean-Soil Air Water, 2013, 41(9): 917-927. |
13 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
14 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
15 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
16 | 陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学: 化学, 2011, 41(9): 1540-1547. |
Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J].Scientia Sinica(Chimica), 2011, 41(9): 1540-1547. | |
17 | 刘畅, 陆小华, 杨祝红, 等. 化工新视野下中国生物甲烷跨越式发展策略[J]. 化工进展, 2013, 32(4): 786-790. |
Liu C, Lu X H, Yang Z H, et al. Leap-forward development strategy of China s biomethane industry based on new developments of chemical engineering[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 786-790. | |
18 | 陆小华, 吉远辉, 冯新, 等. 离子液体捕集二氧化碳非平衡热力学研究方法学探讨[J]. 中国科学: 化学, 2012, 42(3): 245-259. |
Lu X H, Ji Y H, Feng X, et al. Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids[J]. Scientia Sinica (Chimica), 2012, 42(3): 245-259. | |
19 | Xie W L, Ji X Y, Fan T T, et al. CO2 uptake behavior of supported tetraethylenepentamine sorbents[J]. Energy & Fuels, 2016, 30(6): 5083-5091. |
20 | Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001; 56(24): 7017-7024. |
21 | Prausnitz J M. 流体相平衡的分子热力学[M]. 陆小华, 刘洪来, 译. 北京: 化学工业出版社, 2006. |
Prausnitz J M. Molecular Thermodynamics of Fluid-Phase Equilibria[M]. Lu X H, Liu H L, trans. Beijing: Chemical Industry Press, 2006. | |
22 | Pera-Titus M, Miachon S, Dalmon J A. Increased gas solubility in nanoliquids: improved performance in interfacial catalytic membrane contactors[J]. AIChE Journal, 2009, 55(2): 434-441. |
23 | Pera-Titus M, El-Chahal R, Rakotovao V, et al. Direct volumetric measurement of gas oversolubility in nanoliquids: beyond Henry s law[J]. ChemPhysChem, 2009, 10(12): 2082-2089. |
24 | Zhang J, Zhang Q H, Li X L, et al. Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1971-1981. |
25 | Prausnitz J M, Lichtenthaler R N, de Azevedo E G. Molecular Thermodynamics of Fluid-Phase Equilibria[M]. London: Pearson Education, 1998. |
26 | Gibbs J W. On the equilibrium of heterogeneous substances[J]. Transactions of the Connecticut Academy, 1875, 3: 108-248. |
27 | Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095. |
28 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
29 | Fornasiero F, Park H G, Holt J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores[J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17250-17255. |
30 | Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. |
31 | Marbach S, Osmosis Bocquet L., from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(11): 3102-3144. |
32 | Zeng Q, Guo Y C, Niu Z Q, et al. Mass transfer coefficients for CO2 absorption into aqueous ammonia solution using a packed column[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10168-10175. |
33 | Bishnoi S, Rochelle G T. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility[J]. Chemical Engineering Science, 2000, 55(22): 5531-5543. |
34 | Maucci E, Briens C L, Martinuzzi R J, et al. Modeling of transient particle–liquid mass transfer in liquid and liquid–solid systems[J]. Chemical Engineering Science, 2001, 56(15): 4555-4570. |
35 | Lonsdale H K. The growth of membrane technology[J]. Journal of Membrane Science, 1982, 10(2/3): 81-181. |
36 | Shi W, Luebke D R. Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([hmim][Tf2N]) confined in silica slit pores: a molecular simulation study[J]. Langmuir, 2013, 29(18): 5563-5572. |
37 | Shi W, Sorescu D C. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ([hmim][Tf2N]) confined in carbon nanotubes[J]. The Journal of Physical Chemistry B, 2010, 114(446): 15029-15041. |
38 | Hazelbaker E D, Budhathoki S, Katihar A, et al. Combined application of high-field diffusion NMR and molecular dynamics simulations to study dynamics in a mixture of carbon dioxide and an imidazolium-based ionic liquid[J]. The Journal of Physical Chemistry B, 2012, 116(30): 9141-9151. |
39 | Yen T H, Soong C Y, Tzeng P. Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows[J]. Microfluidics and Nanofluidics, 2007, 3(6): 665-675. |
40 | 唐玉朝, 胡春, 王怡中. TiO2光催化反应机理及动力学研究进展[J]. 化学进展, 2002, 14(3): 192-199. |
Tang Y C, Hu C, Wang Y Z. Recent advances in mechanisms and kinetics of TiO2 photocatalysis[J]. Progress in Chemistry, 2002, 14(3): 192-199. | |
41 | Sherwood T, Brian P, Fisher R. Desalination by reverse osmosis[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(1): 2-12. |
42 | Burghoff H G, Lee K, Pusch W. Characterization of transport across cellulose acetate membranes in the presence of strong solute-membrane interactions[J]. Journal of Applied Polymer Science, 1980, 25(3): 323-347. |
43 | Liu C, Feng X, Ji X Y, et al. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statistical rate theory[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 128-130. |
44 | Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444. |
45 | Xie W L, Ji X Y, Feng X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2015, 55(1): 366-372. |
46 | Zhang X, Bao D, Huang Y, et al. Gas-liquid mass-transfer properties in CO2 absorption system with ionic liquids[J]. AIChE Journal, 2014, 60(8): 2929-2939. |
47 | Lu B H, Wang X Q, Xia Y F, et al. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA+[Bmim][BF4] using a double stirred cell[J]. Energy & Fuels, 2013, 27(10): 6002-6009. |
48 | Fan T T, Xie W L, Ji X Y, et al. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513-1521. |
49 | Huang B, Xu S S, Gao S W, et al. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station[J]. Applied Energy, 2010, 87(11): 3347-3354. |
50 | Huang B, Xu S S, Gao S W, et al. Industrial test of CO2 capture in Huaneng Beijing coal-fired power station[J]. Proceedings of the CSEE, 2009, 29(17): 14-17. |
51 | Kim E H, Lee B J. Size dependency of melting point of crystalline nano particles and nano wires: a thermodynamic modeling[J]. Metals and Materials International, 2009, 15(4): 531-537. |
52 | Shibuta Y, Suzuki T. Effect of wettability on phase transition in substrate-supported bcc-metal nanoparticles: a molecular dynamics study[J]. Chemical Physics Letters, 2010, 486(4/5/6): 137-143. |
53 | Luo W H, Hu W Y, Su K L, et al. Gibbs free energy approach to the prediction of melting points of isolated, supported, and embedded nanoparticles[J]. Journal of Applied Physics, 2012, 112(1): 014302. |
54 | Wu N H, Ji X Y, An R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10): 4595-4603. |
55 | An R, Huang L L, Long Y, et al. Liquid–solid nanofriction and interfacial wetting[J]. Langmuir, 2016, 32(3): 743-750. |
56 | Wu N H, Ji X Y, Xie W L, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
57 | 朱育丹, 邬新兵, 陆小华, 等. 基于分子间相互作用的纳米尺度分子传递[J]. 中国科学: 化学, 2014, 44(9): 1423-1430. |
Zhu Y D, Wu X B, Lu X H, et al. Molecular transport at nanoscale studied based on intermolecular interactions[J]. Scientia Sinica(Chimica), 2014, 44(9): 1423-1430. | |
58 | Zhang S G, Zhang J H, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833. |
59 | Gómez-González V, García-Fuente A, Vega A, et al. Density functional study of charge transfer at the graphene/ionic liquid interface[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15070-15077. |
60 | An R, Zhu Y D, Wu N H, et al. Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2692-2698. |
61 | Shao Q, Zhou J, Lu L H, et al. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes[J]. Nano Letters, 2009, 9(3): 989-994. |
62 | Wang J, Zhu Y, Zhou J, et al. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2004, 6(4): 829-835. |
63 | Tang Z Q, Lu L H, Dai Z Y, et al. CO2 absorption in the ionic liquids immobilized on solid surface by molecular dynamics simulation[J]. Langmuir, 2017, 33(42): 11658-11669. |
64 | Dai Z Y, You Y J, Zhu Y D, et al. Atomistic insights into the layered microstructure and time-dependent stability of [BMIM][PF6] confined within the meso-slit of carbon[J]. Journal of Physical Chemistry B, 2019, 123(31): 6857-6869. |
65 | Ramazani R, Mazinani S, Jahanmiri A, et al. Experimental investigation of the effect of addition of different activators to aqueous solution of potassium carbonate: absorption rate and solubility[J]. International Journal of Greenhouse Gas Control, 2016, 45: 27-33. |
66 | Jassim M S, Rochelle G T. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2465-2472. |
67 | Plaza J M, Chen E, Rochelle G T. Absorber intercooling in CO2 absorption by piperazine-promoted potassium carbonate[J]. AIChE Journal, 2010, 56(4): 905-914. |
68 | Li Z, Ji X Y, Yang Z H, et al. Study of CO2 absorption/desorption behaviors in aqueous (2-hydroxyethyl)-trimethyl-ammonium (S)-2-pyrrolidine-carboxylic acid salt ([Cho][Pro])+K2CO3 solutions[J]. International Journal of Greenhouse Gas Control, 2019, 83: 51-60. |
69 |
Li Z, Ji X Y, Yang Z H, et al. Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions[J]. Chinese Journal of Chemical Engineering, 2019, doi:10.1016/j.cjche.2019.01.21.
DOI |
70 | Liu Y, Li H, Wei G, et al. Mass transfer performance of CO2 absorption by alkanolamine aqueous solution for biogas purification[J]. Separation and Purification Technology, 2014, 133(8): 476-483. |
71 | 李峥. 生物甲烷提纯高压水洗工艺分析和强化探索[D]. 南京: 南京工业大学, 2019. |
Li Z. Process analysis and intensification exploration of the high pressure water scrubber and biogas upgrading[D]. Nanjing: Nanjing Tech University, 2019. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[7] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[10] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[11] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||