化工学报 ›› 2020, Vol. 71 ›› Issue (1): 26-33.DOI: 10.11949/0438-1157.20191240
收稿日期:
2019-10-23
修回日期:
2019-10-30
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
李浩然
作者简介:
宋思婕(1997—),女,硕士研究生,基金资助:
Sijie SONG1(),Jia YAO1,Haoran LI1,2()
Received:
2019-10-23
Revised:
2019-10-30
Online:
2020-01-05
Published:
2020-01-05
Contact:
Haoran LI
摘要:
离子液体具有蒸气压低、不易挥发、导电能力强、化学性质稳定、可循环利用等特点,具有以下作用:能够替代有机溶剂作为绿色环保的新型溶剂;可以作为催化剂催化化学反应;可以作为电解质溶液参与电化学反应,制作新型电池;可以作为吸附气体的吸附剂等。过去人们认为离子液体不挥发,也不能测量它们的汽化焓,回顾了近年来离子液体的相关研究成果,发现陆续有研究者提出测量离子液体汽化焓的方法,鉴于目前缺少相关总结工作,将系统性地介绍这些方法并阐述其原理,为今后的离子液体研究提供指导。
中图分类号:
宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
Sijie SONG,Jia YAO,Haoran LI. Methods for measuring vaporization enthalpies of ionic liquids[J]. CIESC Journal, 2020, 71(1): 26-33.
ILs | T/K | ?vapHT①/(kJ·mol-1) | ?vapH298②/( kJ·mol-1) | 方法 | Ref. |
---|---|---|---|---|---|
[C2min][Tf2N] | 463.0 | 118.8±1.3 | 135.3±1.3 | Knudsen | [ |
577.8 | 110.4±2.4 | 136±6 | VVDM | [ | |
430.0 | 118±2 | 134±2 | MS | [ | |
495.5 | 120.6±2.1 | TGA | [ | ||
573.0 | 111.7±1.7 | UV | [ | ||
378.2 | 118.6±1.0 | 126.6±1.0 | QCM | [ | |
DSC | [ | ||||
136.1 | surface tension | [ | |||
[C4mim][Tf2N] | 477.6 | 118.3±1.7 | 136.2±1.7 | Knudsen | [ |
577.0 | 128.4±3.0 | 155±6 | VVDM | [ | |
440.0 | 117±3 | 134±3 | MS | [ | |
495.5 | 118.5±0.4 | TGA | [ | ||
553.0 | 114.1±1.6 | UV | [ | ||
QCM | [ | ||||
DSC | [ | ||||
134.6 | surface tension | [ |
表1 用不同实验方法测定的离子液体[Cnmim][Tf2N](n=2, 4)的汽化焓
Table 1 Vaporization enthalpies of ionic liquids [Cnmim][Tf2N](n=2, 4) by different methods
ILs | T/K | ?vapHT①/(kJ·mol-1) | ?vapH298②/( kJ·mol-1) | 方法 | Ref. |
---|---|---|---|---|---|
[C2min][Tf2N] | 463.0 | 118.8±1.3 | 135.3±1.3 | Knudsen | [ |
577.8 | 110.4±2.4 | 136±6 | VVDM | [ | |
430.0 | 118±2 | 134±2 | MS | [ | |
495.5 | 120.6±2.1 | TGA | [ | ||
573.0 | 111.7±1.7 | UV | [ | ||
378.2 | 118.6±1.0 | 126.6±1.0 | QCM | [ | |
DSC | [ | ||||
136.1 | surface tension | [ | |||
[C4mim][Tf2N] | 477.6 | 118.3±1.7 | 136.2±1.7 | Knudsen | [ |
577.0 | 128.4±3.0 | 155±6 | VVDM | [ | |
440.0 | 117±3 | 134±3 | MS | [ | |
495.5 | 118.5±0.4 | TGA | [ | ||
553.0 | 114.1±1.6 | UV | [ | ||
QCM | [ | ||||
DSC | [ | ||||
134.6 | surface tension | [ |
1 | Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084. |
2 | Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
3 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis[J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
4 | Zhang P F, Gong Y T, Lv Y Q, et al. Ionic liquids with metal chelate anions[J]. Chemical Communications, 2012, 48(17): 2334-2336. |
5 | Itoh T, Han S, Matsushita Y, et al. Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids[J]. Green Chemistry, 2004, 6(9): 437-439. |
6 | Di J, Xia J X, Yin S, et al. One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties[J]. RSC Advances, 2014, 4(27): 14281-14290. |
7 | Huang C P, Liu Z C, Xu C M, et al. Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butane[J]. Applied Catalysis A: General, 2004, 277(1/2): 41-43. |
8 | Yin S, Di J, Li M, Sun Y L, et al. Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl[J]. Journal of Materials Science, 2016, 51(10): 4769-4777. |
9 | Chiappe C, Pieraccini D. Ionic liquids: solvent properties and organic reactivity[J]. Journal of Physical Organic Chemistry, 2005, 18(4): 275-297. |
10 | Park J W, Yamauchi K, Takashima E, et al. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2013, 117(9): 4431-4440. |
11 | Khachatryan K S, Smirnova S V, Torocheshnikova I I, et al. Solvent extraction and extraction–voltammetric determination of phenols using room temperature ionic liquid[J]. Analytical and Bioanalytical Chemistry, 2005, 381(2): 464-470. |
12 | Parajó J J, Macário I P E, Gaetano Y D, et al. Glycine-betaine-derived ionic liquids: synthesis, characterization and ecotoxicological evaluation[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109580. |
13 | Wang H Z, Lu Q M, Ye C F, et al. Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact[J]. Wear, 2004, 256(1/2): 44-48. |
14 | Qu J, Truhan J J, Dai S, et al. Ionic liquids with ammonium cations as lubricants or additives[J]. Tribology Letters, 2006, 22(3): 207-214. |
15 | Jiménez A E, Bermúdez M D, Carrión F J, et al. Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature[J]. Wear, 2006, 261(3/4): 347-359. |
16 | Armand M, Endres F, Douglas R M, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629. |
17 | Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies[J]. Journal of Power Sources, 2009, 194(1): 601-609. |
18 | Zakeeruddin S M, Gratzel M. Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells[J]. Advanced Functional Materials, 2009, 19(14): 2187-2202. |
19 | Kim T Y, Lee H W, Stoller M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano, 2011, 5(1): 436-442. |
20 | Zhang Y Q, Zhang S J, Lu X M, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chemistry-A European Journal, 2009, 15(12): 3003-3011. |
21 | Hice S A, Clark K D, Anderson J L, et al. Capture, concentration, and detection of salmonella in foods using magnetic ionic liquids and recombinase polymerase amplification[J]. Analytical Chemistry, 2019, 91(1): 1113-1120. |
22 | Palomar J, Lemus J, Gilarranz M A, et al. Adsorption of ionic liquids from aqueous effluents by activated carbon[J]. Carbon, 2009, 47(7): 1846-1856. |
23 | Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
24 | MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669. |
25 | Yu C H, Huang C H, Tan C S. A review of CO2 capture by absorption and adsorption[J]. Aerosol and Air Quality Research, 2012, 12(5): 745-769. |
26 | Zhang Q H, Zhang S G, Deng Y Q. Recent advances in ionic liquid catalysis[J]. Green Chemistry, 2011, 13(10): 2619. |
27 | Giernoth R. Task-specific ionic liquids[J]. Angewandte Chemie-International Edition, 2010, 49(16): 2834-2839. |
28 | Walden P. Ueber die molekulargrösse und elektrische leitfähigkeit einiger geschmolzenen salze[J]. Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg, 1914, 8(6): 405-422. |
29 | Hurley F H, Weir T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. Journal of the Electrochemical Society, 1951, 98(5): 203-206. |
30 | Gale R J, Gilbert B, Osteryoung R A. Raman spectra of molten aluminum chloride: 1-butylpyridinium chloride systems at ambient temperatures[J]. Inorganic Chemistry, 1978, 17(10): 2728-2729. |
31 | Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications[J]. Applied Catalysis A: General, 2010, 373(1/2):1-56. |
32 | Earle M J, Esperança J M S S, Gilea M A, et al. The distillation and volatility of ionic liquids[J]. Nature, 2006, 439(7078): 831-834. |
33 | Seddon K R. Room-temperature ionic liquids—neoteric solvents for clean catalysis[J]. Kinetics and Catalysis, 1996, 37(5): 693-697. |
34 | Seddon K R. In molten salt forum[C]//Proceedings of 5th International Conference on Molten Salt Chemistry and Technology. Zürich: Trans Tech Publications, 1998: 52-62. |
35 | Paulechka Y U, Kabo G J, Blokhin A V, et al. Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the ideal gas state[J]. Journal of Chemical & Engineering Data, 2003, 48(3): 457-462. |
36 | Rebelo L P N, Lopes J N C, Esperança J M S S, et al. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids[J]. The Journal of Physical Chemistry B, 2005, 109(13): 6040-6043. |
37 | Paulechka Y U, Zaitsau D H, Kabo G J, et al. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[J]. Thermochimica Acta, 2005, 439: 158-160. |
38 | Ipser H. Vapor pressure methods: a source of experimental thermodynamic data[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1998, 102(9): 1217-1224. |
39 | Zaitsau D H, Verevkin S P, Paulechka Y U, et al. Comprehensive study of vapor pressures and enthalpies of vaporization of cyclohexyl esters[J]. Journal of Chemical & Engineering Data, 2003, 48(6): 1393. |
40 | Zaitsau D H, Kabo G J, Strechan A A, et al. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids[J]. The Journal of Physical Chemistry A, 2006, 110(22): 7303-7306. |
41 | Adedeji F A, Lalage D, Brown S, et al. Thermochemistry of arene chromium tricarbonyls and the strenghts of arene-chromium bonds[J]. Journal of Organometallic Chemistry, 1975, 97(2): 221-228. |
42 | Santos L M N B F, Schröder B, Fernandes O O P, et al. Measurement of enthalpies of sublimation by drop method in a calvet type calorimeter: design and test of a new system[J]. Thermochimica Acta, 2004, 415: 15-20. |
43 | Santos L M N B F, Lopes J N C, Coutinho J A P, et al. Ionic liquids: first direct determination of their cohesive energy[J]. Journal of the American Chemical Society, 2007, 129(1): 284-285. |
44 | Armstrong J P, Hurst C, Jones R G, et al. Vapourisation of ionic liquids[J]. Physical Chemistry Chemical Physics, 2007, 9(8): 982-990. |
45 | Deyko A, Lovelock K R J, Corfield J A, et al. Measuring and predicting ∆vapH298 values of ionic liquids[J]. Physical Chemistry Chemical Physics, 2009, 11(38): 8544-8555. |
46 | Lovelock K R J, Deyko A, Licence P, et al. Vaporisation of an ionic liquid near room temperature[J]. Physical Chemistry Chemical Physics, 2010, 12(31): 8893-8901. |
47 | Chatterjee K, Dollimore D, Alexander K S. Calculation of vapor pressure curves for hydroxybenzoic acid derivatives using thermogravimetry[J]. Thermochimica Acta, 2002, 392/393: 107-117. |
48 | Luo H M, Baker G A, Dai S. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids[J]. The Journal of Physical Chemistry B, 2008, 112(33): 10077-10081. |
49 | Chatterjee K, Hazra A, Dollimore D, et al. Estimating vapor pressure curves by thermogravimetry: a rapid and convenient method for characterization of pharmaceuticals[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 54(2): 171-180. |
50 | Dai S, Toth L M, Cul G D D, et al. Ultraviolet-visible absorption spectrum of C60 vapor and determination of the C60 vaporization enthalpy[J]. Journal of Chemical Physics, 1994, 101(5): 4470-4471. |
51 | Dai S. Correct regression formula used in determination of vaporization enthalpy of pure liquids by UV-visible spectroscopy[J]. Journal of Chemical Education, 1996, 73(2): 122. |
52 | Verevkin S P, Ralys R V, Zaitsau D H, et al. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds[J]. Thermochim. Acta, 2012, 538: 55-62. |
53 | Wang C M, Luo H M, Li H R, et al. Direct UV-spectroscopic measurement of selected ionic-liquid vapors[J]. Physical Chemistry Chemical Physics, 2010, 12(26): 7246-7250. |
54 | Verevkin S P, Zaitsau D H, EmeÌlyanenko V N, et al. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures[J]. The Journal of Physical Chemistry B, 2011, 115(44): 12889-12895. |
55 | Grate J W. Acoustic wave microsensor arrays for vapor sensing[J]. Chemical Reviews, 2000, 100(7): 2627-2748. |
56 | Sauerbrey G Z. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung[J]. Zeitschrift für Physik, 1959, 155(2): 206-222. |
57 | Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution[J]. Electrochimica Acta, 1985, 30(10): 1295-1300. |
58 | Kanasawa K K, Gordon J G. Frequency of a quartz microbalance in contact with liquid[J]. Analytical Chemistry, 1985, 57(8): 1770-1771. |
59 | Klavetter E A, Martin S J, Wessendorf K O. Monitoring jet fuel thermal stability using a quartz crystal microbalance[J]. Energy Fuels, 1993, 7(5): 582-588. |
60 | Tsionsky V, Daikhin L, Urbakh M, et al. Behavior of quartz cystal microbalance in nonadsorbed gases at high pressures[J]. Langmuir, 1995, 11(2): 674-678. |
61 | Mecea V M. Fundamentals of mass measurements[J]. Journal of Thermal Analysis and Calorimetry, 2006, 86(1): 9-16. |
62 | Johannsmann D. Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance[J]. Physical Chemistry Chemical Physics, 2008, 10(31): 4516-4534. |
63 | Liang C, Yuan C Y, Warmack R J, et al. Ionic liquids: a new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance[J]. Analytical Chemistry, 2002, 74(9): 2172-2176. |
64 | Ma H, He J, Zhu Z, et al. A quartz crystal microbalance-based molecular ruler for biopolymers[J]. Chemical Communications, 2010, 46(6): 949-951. |
65 | Verevkin S P, Ralys R V, Emel yanenko V N, et al. Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(1): 353-358. |
66 | Verevkin S P, Emelyanenko V N, Zaitsau D Z, et al. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies[J]. The Journal of Physical Chemistry B, 2012, 116(14): 4276-4285. |
67 | Paulechka Y U. Heat capacity of room-temperature ionic liquids: a critical review[J]. Journal of Physical and Chemical Reference Data, 2010, 39(3): 33108-33123. |
68 | Tong J, Liu Q S, Zhang P, et al. Surface tension and density of 1-methyl-3-hexylimidazolium chloroindium[J]. Journal of Chemical and Engineering Data, 2007, 52(4): 1497-1500. |
69 | Tong J, Liu Q S, Kong Y X, et al. Physicochemical properties of an ionic liquid [C2mim][B(CN)4][J]. Journal of Chemical and Engineering Data, 2010, 55(9): 3693-696. |
70 | Wei H D, Wang Y T, Yao J, et al. Empirical study of physicochemical and spectral properties of CuII-containing chelate-based ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(6): 4109-4117. |
71 | Verevkin S P. Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property[J]. Angewandte Chemie-International Edition, 2008, 47(27): 5071-5074. |
72 | Zaitsau D H, Fumino K, Emel yanenko V N, et al. Structure–property relationships in ionic liquids: a study of the anion dependence in vaporization enthalpies of imidazolium-based ionic liquids[J]. ChemPhysChem, 2012, 13(7): 1868-1876. |
73 | Slattery J M, Daguenet C, Dyson P J, et al. How to predict the physical properties of ionic liquids: a volume-based approach schubert[J]. Angewandte Chemie-International Edition, 2007, 119(28): 5480-5484. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[13] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[14] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[15] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||