1 |
Ö Almarsson, Zaworotko M. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? [J]. Chem. Commun., 2004, 35(17): 1889-1896.
|
2 |
Lipinski C A J. Drug-like properties and the causes of poor solubility and poor permeability[J]. J. Pharmacol. Toxicol. Methods, 2000, 44(1): 235-249.
|
3 |
Takagi T, Ramachandran C, Bermejo M, et al. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan[J]. Mol. Pharm., 2006, 3(6): 631-643.
|
4 |
Pouton C W. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system[J]. Eur. J. Pharm. Sci., 2006, 29(3/4): 278-287.
|
5 |
Bučar D K, Lancaster R W, Bernstein J. Disappearing polymorphs revisited[J]. Angew. Chem. Int. Ed., 2015, 54(24): 6972-6993.
|
6 |
Vishweshwar P, Mcmahon J A, Bis J A, et al. Pharmaceutical co-crystals[J]. J. Pharm. Sci., 2006, 95(3): 499-516.
|
7 |
陈嘉媚, 吴传斌, 鲁统部. 超分子化学在药物共晶中的应用[J]. 高等学校化学学报, 2011, 32(9): 1996-2009.
|
|
Chen J M, Wu C B, Lu T B. Application of supramolecular chemistry in pharmaceutical co-crystals[J]. Chemical Journal of Chinese Universities, 2011, 32(9): 1996-2009.
|
8 |
Zhang C Y, Xiong Y, Jiao F B, et al. Redefining the term of cocrystal and broadening its intension[J]. Cryst. Growth Des., 2019, 19(3): 1471-1478.
|
9 |
Aitipamula S, Banerjee R, Bansal A K, et al. Polymorphs, salts, and cocrystals: what s in a name? [J]. Cryst. Growth Des., 2012, 12(5): 2147-2152.
|
10 |
Aakeröy C B, Fasulo M E, Desper J. Cocrystal or salt: does it really matter? [J]. Mol. Pharm., 2007, 4: 317-322.
|
11 |
Etter M C. Encoding and decoding hydrogen-bond patterns of organic compounds margaret[J]. Acc. Chem. Res., 1990, 23(4): 120-126.
|
12 |
Gadade D D, Pekamwar S S. Pharmaceutical cocrystals: regulatory and strategic aspects, design and development[J]. Advanced Pharmaceutical Bulletin, 2016, 6(4): 479-494.
|
13 |
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Regulatory classification of pharmaceutical co-crystals, Revision 1[EB/OL]. [2019-09-06]. .
|
14 |
黄耀辉, 尹秋响, 张霞, 等. 药物共晶的合成和结构分析[J]. 化工学报, 2017, 68(2): 509-518.
|
|
Huang Y H, Yin Q X, Zhang X, et al. Synthesis and structural analysis of pharmaceutical co-crystals[J]. CIESC Journal, 2017, 68(2): 509-518.
|
15 |
Koranne S, Krzyzaniak J F, Luthra S, et al. Role of coformer and excipient properties on the solid-state stability of theophylline cocrystals [J]. Cryst. Growth Des., 2019, 19(2): 868-875.
|
16 |
Aakeröy C B, Salmon D J. Building co-crystals with molecular sense and supramolecular sensibility[J]. Cryst. Eng. Comm., 2005, 7(72): 439-448.
|
17 |
Shiraki K, Takata N, Takano R, et al. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds[J]. Pharmaceutical Research, 2008, 25(11): 2581-2592.
|
18 |
Duggirala N K, Perry M L, Ö Almarsson, et al. Pharmaceutical cocrystals: along the path to improved medicines[J]. Chemical Communications, 2016, 52(4): 640-655.
|
19 |
Shayanfar A, Asadpour-Zeynali K, Jouyban A. Solubility and dissolution rate of a carbamazepine-cinnamic acid cocrystal[J]. Journal of Molecular Liquids, 2013, 187: 171-176.
|
20 |
Childs S L, Chyall L J, Dunlap J T, et al. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids[J]. Journal of the American Chemical Society, 2004, 126(41): 13335-13342.
|
21 |
Chen Y, Li L, Yao J, et al. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal[J]. Crystal Growth & Design, 2016, 16(5): 2923-2930.
|
22 |
Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties[J]. Crystal Growth and Design, 2009, 9(6): 2950-2967.
|
23 |
Braga D, Grepioni F, Maini L, et al. From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide[J]. Chemical Communications, 2010, 46(41): 7715-7717.
|
24 |
Tsutsui H, Momomura S, Saito Y, et al. Efficacy and safety of sacubitril/valsartan (LCZ696) in Japanese patients with chronic heart failure and reduced ejection fraction: rationale for and design of the randomized, double-blind PARALLEL-HF study[J]. Journal of Cardiology, 2017, 70(3): 225-231.
|
25 |
Feng L, Karpinski P H, Sutton P, et al. LCZ696: a dual-acting sodium supramolecular complex[J]. Tetrahedron Letters, 2012, 53(3): 275-276.
|
26 |
Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects[J]. Drug Metabolism and Disposition, 2013, 41(2): 445-456.
|
27 |
Chen N, Hao C, Peng X, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis[J]. N. Engl. J. Med., 2019, 381(11): 1011-1022.
|
28 |
Chen N, Hao C, Liu B C, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis[J]. N. Engl. J. Med., 2019, 381(11): 1001-1010.
|
29 |
Royal Society of Chemistry. Water solubility estimate from Log Kow (WSKOW v1.41. [EB/OL]. [2019-09-18]. .
|
30 |
Witschi C, Park J M, Thompson M D, et al. Crystalline forms of a prolyl hydroxylase inhibitor: WO2014014835A2[P]. 2014-01-23.
|
31 |
Li J, Wang L, Ye Y Q, et al. Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide[J]. European Journal of Pharmaceutical Sciences, 2016, 85: 47-52.
|
32 |
Avdeef A, Tsinman O. Miniaturized rotating disk intrinsic dissolution rate measurement: effects of buffer capacity in comparisons to traditional Wood s apparatus[J]. Pharmaceutical Research, 2008, 25(11): 2613-2627.
|
33 |
Emami S, Adibkia K, Barzegar J M, et al. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties[J]. Pharmaceutical Development and Technology, 2019, 24(2): 199-210.
|